Comparison of Template Matching Algorithm and Feature Extraction Algorithm in Sundanese Script Transliteration Application using Optical Character Recognition

Authors

  • Yana Aditia Gerhana (Scopus ID : 57191836144, H-Index: 5), UIN Sunan Gunung Djati Bandung, Indonesia
  • Aldy Rialdy Atmadja UIN Sunan Gunung Djati Bandung, Indonesia
  • Muhamad Farid Padilah UIN Sunan Gunung Djati bandung, Indonesia

DOI:

https://doi.org/10.15575/join.v5i1.580

Keywords:

Feature Extraction Algorithm, Luminosity Algorithm, Matching Template Algorithm, Sundanese Script, Thresholding Algorithm

Abstract

The phenomenon that occurs in the area of West Java Province is that the people do not preserve their culture, especially regional literature, namely Sundanese script, in this digital era there is research on Sundanese script combined with applications using Feature Extraction algorithm, but there is no comparison with other algorithms and cannot recognize Sundanese numbers. Therefore, to develop the research a Sundanese script application was made with the implementation of OCR (Optical Character Recognition) using the Template Matching algorithm and the Feature Extraction algorithm that was modified with the pre-processing stages including using luminosity and thresholding algorithms, from the two algorithms compared to the accuracy and time values the process of recognizing digital writing and handwriting, the results of testing digital writing algorithm Matching algorithm has a value of 87% word recognition accuracy with 236 ms processing time and 97.6% character recognition accuracy with 227 ms processing time, Feature Extraction has 98% word recognition accuracy with 73.6 ms processing time and 100% character recognition accuracy with 66 ms processing time, for handwriting recognition in feature extraction character recognition has 83% accuracy and 75% word recognition , while template matching in character recognition has an accuracy of 70% and word recognition has an accuracy of 66%.

Author Biographies

Yana Aditia Gerhana, (Scopus ID : 57191836144, H-Index: 5), UIN Sunan Gunung Djati Bandung

Aldy Rialdy Atmadja, UIN Sunan Gunung Djati Bandung

References

J. Liang, D. Doermann, and H. Li, “Camera-based analysis of text and documents: A survey,†Int. J. Doc. Anal. Recognit., vol. 7, no. 2–3, pp. 84–104, 2005, doi: 10.1007/s10032-004-0138-z.

R. D. Zarro and M. A. Anwer, “Recognition-based online Kurdish character recognition using hidden Markov model and harmony search,†Eng. Sci. Technol. an Int. J., vol. 20, no. 2, pp. 783–794, 2017, doi: 10.1016/j.jestch.2016.11.016.

M. Soua, R. Kachouri, and M. Akil, “Efficient multiscale and multifont optical character recognition system based on robust feature description,†5th Int. Conf. Image Process. Theory, Tools Appl. 2015, IPTA 2015, pp. 575–580, 2015, doi: 10.1109/IPTA.2015.7367214.

S. Desai and A. Singh, “Optical character recognition using template matching and back propagation algorithm,†Proc. Int. Conf. Inven. Comput. Technol. ICICT 2016, vol. 2016, 2016, doi: 10.1109/INVENTIVE.2016.7830161.

D. Kalina and R. Golovanov, “Application of template matching for optical character recognition,†Proc. 2019 IEEE Conf. Russ. Young Res. Electr. Electron. Eng. ElConRus 2019, pp. 2213–2217, 2019, doi: 10.1109/EIConRus.2019.8657297.

K. El Gajoui, F. A. Allah, and M. Oumsis, “Diacritical Language OCR Based on Neural Network: Case of Amazigh Language,†Procedia Comput. Sci., vol. 73, no. Awict, pp. 298–305, 2015, doi: 10.1016/j.procs.2015.12.035.

A. Farhat et al., “OCR based feature extraction and template matching algorithms for Qatari number plate,†2016 Int. Conf. Ind. Informatics Comput. Syst. CIICS 2016, 2016, doi: 10.1109/ICCSII.2016.7462419.

P. Ahmed and Y. Al-Ohali, “Arabic Character Recognition:

Progress and Challenges,†J. King Saud Univ. - Comput. Inf. Sci., vol. 12, pp. 85–116, 2000, doi: 10.1016/s1319-1578(00)80004-x.

M. Ryan and N. Hanafiah, “An Examination of Character Recognition on ID cardusing Template Matching Approach,†Procedia Comput. Sci., vol. 59, pp. 520–529, 2015, doi: 10.1016/j.procs.2015.07.534.

A. Chaudhuri, K. Mandaviya, P. Badelia, and S. K Ghosh, Optical Character Recognition Systems for Different Languages with Soft Computing, vol. 352, no. December. 2017.

D. B. Alamsyah, “Implementasi Text Recognition untuk mendeteksi Digital Writing dan Handwriting dalam Alfabet Latin menggunakan OCR (Optical Character Recognition),†Aug. 2018.

A. E. Utami, O. D. Nurhayati, and K. T. Martono, “Aplikasi Penerjemah Bahasa Inggris – Indonesia dengan Optical Character Recognition Berbasis Android,†J. Teknol. dan Sist. Komput., vol. 4, no. 1, p. 167, Jan. 2016, doi: 10.14710/jtsiskom.4.1.2016.167-177.

M. A. A. Rashwan, M. W. T. Fakhr, M. Attia, and M. El-Mahallawy, “Arabic OCR system analogous to HMM-based ASR systems; implementation and evaluation,†J. Eng. Appl. Sci., vol. 54, no. 6, pp. 653–672, 2007.

N. Samadiani and H. Hassanpour, “A neural network-based approach for recognizing multi-font printed English characters,†J. Electr. Syst. Inf. Technol., vol. 2, no. 2, pp. 207–218, 2015, doi: 10.1016/j.jesit.2015.06.003.

C. Saravanan, “Color image to grayscale image conversion,†2010 2nd Int. Conf. Comput. Eng. Appl. ICCEA 2010, vol. 2, no. April 2010, pp. 196–199, 2010, doi: 10.1109/ICCEA.2010.192.

S. R. Nayak and J. Mishra, “An Improved Method to Estimate the Fractal Dimension of Color Images,†Perspect. Sci., vol. 8, pp. 412–416, 2016, doi: 10.1016/j.pisc.2016.04.092.

G. Jyothi, C. Sushma, and D. S. S. Veeresh, “Luminance Based Conversion of Gray Scale Image to RGB Image,†Int. J. Comput. Sci. Inf. Technol. Res., vol. 3, no. 3, pp. 279–283, 2015.

S. Pölsterl, S. Conceti, N. Navab, and A. Katouzian, “Survival analysis for high-dimensional, heterogeneous medical data: Exploring feature extraction as an alternative to feature selection,†Artif. Intell. Med., vol. Volume 72, pp. 1–11, 2016, doi: 10.1016/j.artmed.2016.07.004.

Y. Jisung, S. H. Sung, D. K. Seong, S. K. Myung, and C. Jihun, “Scale-invariant template matching using histogram of dominant gradients,†Pattern Recognit., vol. 47, no. 9, 2014, doi: 10.1016/j.patcog.2014.02.016.

J.Weber and S.Levre, “Spatial and spectral morphological template matching,†Image Vis. Comput., vol. 30, no. 12, pp. 934–945, 2012, doi: 10.1016/j.imavis.2012.07.002.

Downloads

Published

2020-07-16

Issue

Section

Article

Citation Check