Classification of the Fluency Multipurpose of Bank Mandiri Credit Payments Based on Debtor Preferences Using Naive Bayes and Neural Network Method
Keywords:
Classification, Credit Debtors, Naive Bayes, Neural NetworkAbstract
One that has an important role in generating bank profits is providing credit to customers, but credit also carries a very high risk. For this reason, in providing credit to debtors, of course the bank will utilize the personal data of prospective debtors in detail to avoid the risk of problems that will arise in the future. One of the appropriate risks for banks in providing credit is the behavior of customers who do not pay installments at the time which causes bad loans. To overcome and overcome the many bad events, there is an algorithmic calculation method with an intelligent computing system that helps banks in selecting prospective debtors who will be given credit. There are many algorithmic methods that can be used in this kind of research. This study analyzes the classification of staffing credit based on the criteria that become the Bank's standard.The data used by the author in this study uses existing debtor credit data from 2017 to 2020, the modeling process is carried out using split validation with the Naive Bayes algorithm and Neural Network, with this algorithm the 1,314 datasets is divided into 2 parts, namely 80% used as training data and 20% used as testing data.
 The results showed that the Neural Network algorithm has better results with a correct value of 84.13%, while the Naive Bayes algorithm only produces a value of 72.62%
References
Achmad Rifai. (2016). KAJIAN ALGORITMA C4 . 5 , NAIVE BAYES , NEURAL NETWORK DAN SVM DALAM
PENENTUAN. 2, 176–182.
Amrin. (2015). Analisa Kelayakan Pemberian Kredit Mobil Dengan Menggunakan Neural Network Backpropagation.
Jurnal Techno Nusa Mandiri, XII, 50.
Fayyad, . Usama. (1996). Advances in Knowledge Discovery and Data Mining. MIT Press.
Han, J,. & Kamber M, . (2006). Data Mining Concepts, Models and Techniques. New Age International Limited,
India.
Hasan, M. (2017). MENGGUNAKAN ALGORITMA NAIVE BAYES BERBASIS. 9, 317–324.
Informaatikalogi. (2017). Algoritma Nive Bayes. https://informatikalogi.com/algoritma-naive-bayes//
Ismail. (2010). Akuntansi Bank. Kencana.
Kasmir. (2015). Manajemen Perbankan (13th ed.).
Lailiyah A. (2014). Urgensi Analis 5c Pada Pemberian Kredit Perbankan Untuk Meminimalisir Resiko. 29(2),
–232.
Liantoni, F., & Nugroho, . (2015). Klasifikasi Daun Herbal Menggunakan Metode Naive Bayes Classifier Dan
Knearest Neigbor. Jurnal Simantec, 4.
Mandala, E. P. W., & Putri, D. E. (2018). Prediksi Jumlah Pemberian Kredit Kepada Nasabah Di Bank Perkreditan
Rakyat Dengan Algoritma C 4.5. Komtekinfo, 5(1), 70–80.
Marie, F., & Supianto, A. (2018). Clustering Credit Card Holder Berdasarkan Pembayaran Tagihan Menggunakan
Improved K-Means dengan Particle Swarm Optimization TAGIHAN MENGGUNAKAN IMPROVED K-MEANS
DENGAN PARTICLE SWARM. November. https://doi.org/10.25126/jtiik.20185858
Murdianingsih, Y. (2015). KLASIFIKASI NASABAH BAIK DAN BERMASALAH. 2015(November), 349–356.
Pratama, A. Z., Kurniawati, L., Larbona, S., & Haryanti, T. (2019). Algoritma C4 . 5 Untuk Klasifikasi Nasabah
Dalam. 3(2), 121–130.
Rani, L. N. (2016). Klasifikasi Nasabah Menggunakan Algoritma C4 . 5 Sebagai Dasar Pemberian Kredit.
Santoso, H., Hariyadi, I.P., & P. (2016). Data Mining oritma Apriori Pola Pembelan Produk Dengan Menggunakan
Metode Algoritma Apriori. Seminar Internasional Teknologi Informasi Dan Multimedia, 2.
Sutabri, T., Suryatno, A., Setiadi, D., & Negara, E. S. (2018). Improving naïve bayes in sentiment analysis for hotel
industry in Indonesia. Proceedings of the 3rd International Conference on Informatics and Computing, ICIC 2018,
March, 1–6. https://doi.org/10.1109/IAC.2018.8780444
Sintia, S., Khautsar, A., Puspitasari, D., & Mustika, P. (2018). Algoritma Naïve Bayes Untuk Memprediksi Kredit
Macet Pada Koperasi Simpan Pinjam. 4(2).
D. Wanto, Anjar, Data Mining : Algoritma dan Implementasi - Books. Yayasan Kita Menulis, 2020.
Zola, F., Nurcahyo, G. W., & Jaringan, T. K. (2018). Jaringan syaraf tiruan menggunakan algoritma
backpropagation untuk memprediksi prestasi siswa. 1(1), 58–72.
Downloads
Published
Issue
Section
Citation Check
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License