Comparative Analysis of Naive Bayes, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM) Algorithms for Classification of Heart Disease Patients
DOI:
https://doi.org/10.15575/join.v7i2.919Keywords:
Classification algorithms, Heart disease, K-Nearest Neighbors (KNN), Naive Bayes, Support Vector Machine (SVM)Abstract
References
C. W. Tsao et al., “Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association,†Circulation, vol. 145, no. 8, pp. e153–e639, Feb. 2022.
“Global atlas on cardiovascular disease prevention and control.†[Online]. Available: https://www.who.int/publications/i/item/9789241564373. [Accessed: 31-Jul-2022].
M. Allahyari et al., “Text Summarization Techniques : A Brief Survey,†2017.
S. Ghwanmeh, A. Mohammad, and A. Al-Ibrahim, “Innovative Artificial Neural Networks-Based Decision Support System for Heart Diseases Diagnosis,†J. Intell. Learn. Syst. Appl., vol. 05, no. 03, pp. 176–183, 2013.
Q. Kadhim Al-Shayea, “Artificial Neural Networks in Medical Diagnosis,†IJCSI Int. J. Comput. Sci. Issues, vol. 8, no. 2, 2011.
P. Ghosh et al., “Efficient prediction of cardiovascular disease using machine learning algorithms with relief and lasso feature selection techniques,†IEEE Access, vol. 9, pp. 19304–19326, 2021.
A. Rufai, U. S., and M. Umar, “Using Artificial Neural Networks to Diagnose Heart Disease,†Int. J. Comput. Appl., vol. 182, no. 19, pp. 1–6, Oct. 2018.
D. A. Firdlous, “Komparasi Algoritma Klasifikasi Data Mining untuk Memprediksi Penyakit Jantung,†Infoman’s J. Ilmu-ilmu Manaj. dan Inform., vol. 16, no. 1, pp. 79–84, May 2022.
K. Pahwa and R. Kumar, “Prediction of heart disease using hybrid technique for selecting features,†2017 4th IEEE Uttar Pradesh Sect. Int. Conf. Electr. Comput. Electron. UPCON 2017, vol. 2018-January, pp. 500–504, Jun. 2017.
S. Pouriyeh, S. Vahid, G. Sannino, G. De Pietro, H. Arabnia, and J. Gutierrez, “A comprehensive investigation and comparison of Machine Learning Techniques in the domain of heart disease,†Proc. - IEEE Symp. Comput. Commun., pp. 204–207, Sep. 2017.
A. Fadlli and M. I. Rosadi, “Klasifikasi Penyakit Jantung Koroner Menggunakan Seleksi Fitur Dan Support Vector Machine,†Explor. IT J. Keilmuan dan Apl. Tek. Inform., vol. 10, no. 2, pp. 32–41, 2018.
“Klasifikasi K-Nearest Neighbors (KNN) Menggunakan Python | by ERZYLIA HERLIN BRILIANT | Medium.†[Online]. Available: https://medium.com/@16611077/klasifikasi-k-nearest-neighbors-knn-menggunakan-python-10c64bcb10a1. [Accessed: 21-Jul-2022].
M. Fairuzabdi, “Konsep Dasar Data, Informasi & Pengetahuan - FairuzelsaidFairuzelsaid,†2020. [Online]. Available: http://fairuzelsaid.upy.ac.id/sistem-informasi/konsep-dasar-data-informasi-pengetahuan/. [Accessed: 20-Jul-2022].
“Naive Bayes Classifier Tutorial: with Python Scikit-learn | DataCamp.†[Online]. Available: https://www.datacamp.com/tutorial/naive-bayes-scikit-learn. [Accessed: 21-Jul-2022].
M. Awad and R. Khanna, “Support Vector Machines for Classification,†Effic. Learn. Mach., pp. 39–66, 2015.
M. T., D. Mukherji, N. Padalia, and A. Naidu, “A Heart Disease Prediction Model using SVM-Decision Trees-Logistic Regression (SDL),†Int. J. Comput. Appl., vol. 68, no. 16, pp. 11–15, Apr. 2013.
“Scikit-learn SVM Tutorial with Python (Support Vector Machines) | DataCamp.†[Online]. Available: https://www.datacamp.com/tutorial/svm-classification-scikit-learn-python. [Accessed: 29-Jul-2022].
“Support Vector Machine Classification with Python | by Kurnia Sari Pratiwi | Medium.†[Online]. Available: https://medium.com/@kurniasp/support-vector-machine-classification-with-python-64521fbd5b57. [Accessed: 29-Jul-2022].
D. for H. D. and S. P. National Center for Chronic Disease Prevention and Health Promotion, “Heart Disease Facts | cdc.gov,†2022. [Online]. Available: https://www.cdc.gov/heartdisease/facts.htm. [Accessed: 26-Jul-2022].
J. Xu, Y. Zhang, and D. Miao, “Three-way confusion matrix for classification: A measure driven view,†Inf. Sci. (Ny)., vol. 507, pp. 772–794, Jan. 2020.
Downloads
Published
Issue
Section
Citation Check
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License