Two-stage Gene Selection and Classification for a High-Dimensional Microarray Data
DOI:
https://doi.org/10.15575/join.v5i1.569Keywords:
Classification and Regression, Feature selection, Gene expression, High-dimensional, Microarray, TreeAbstract
References
I. Guyon and A. Elisseeff, “An Introduction to Variable and Feature Selection,†J. Mach. Learn. Res., vol. 3, pp. 1157–1182, 2003.
S. Biswas, M. Bordoloi, and B. Purkayastha, “Review on Feature Selection and Classification using Neuro-Fuzzy Approaches,†Int. J. Appl. Evol. Comput., vol. 7, no. 4, pp. 28–44, 2016, doi: 10.4018/IJAEC.2016100102.
H. Zhang, J. Wang, Z. Sun, J. M. Zurada, and N. R. Pal, “Feature Selection for Neural Networks Using Group Lasso Regularization,†IEEE Trans. Knowl. Data Eng., vol. 32, no. 4, pp. 659–673, 2020, doi:10.1109/TKDE.2019.2893266
R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,†J. R. Stat. Soc. Ser. B, vol. 58, no. 1, pp. 267–288, 1996.
S. Tateishi, H. Matsui, and S. Konishi, “Nonlinear regression modeling via the lasso-type regularization,†J. Stat. Plan. Inference, vol. 140, no. 5, pp. 1125–1134, 2010, doi: 10.1016/j.jspi.2009.10.015.
Y. Fan and C. Y. Tang, “Tuning parameter selection in high dimensional penalized likelihood,†J. R. Stat. Soc. Ser. B (Statistical Methodol., vol. 75, pp. 531–552, 2013.
K. Hirose, S. Tateishi, and S. Konishi, “Tuning parameter selection in sparse regression modeling,†Comput. Stat. Data Anal., vol. 59, pp. 28–40, 2013, doi: 10.1016/j.csda.2012.10.005.
Z. Y. Algamal and M. H. Lee, “Penalized Logistic Regression with the Adaptive LASSO for Gene Selection in High-Dimensional Cancer Classification,†Expert Syst. Appl., vol. 42, no. 23, pp. 9326–9332, 2015.
C. Kang, Y. Huo, L. Xin, B. Tian, and B. Yu, “Feature Selection and Tumor Classification for Microarray Data Using Relaxed Lasso and Generalized Multi-class Support Vector Machine,†J. Theor. Biol., 2018, doi: 10.1016/j.jtbi.2018.12.010.
L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees. Chapman and Hall, 1984.
H. Jiang, W. Zheng, L. Luo, and Y. Dong, “A two-stage minimax concave penalty based method in pruned AdaBoost ensemble,†Appl. Soft Comput. J., vol. 83, 2019, doi: 10.1016/j.asoc.2019.105674.
B. J. Friedman, T. Hastie, and H. Holger, “Pathwise Coordinate Optimization,†Ann. Appl. Stat., vol. 1, no. 2, pp. 302–332, 2007, doi: 10.1214/07-AOAS131.
J. Friedman, T. Hastie, and R. Tibshirani, “Regularization Paths for Generalized Linear Models via Coordinate Descent,†J. Stat. Softw., vol. 33, no. 1, 2010.
R. Mazumder, J. H. Friedman, and T. Hastie, “SparseNet: Coordinate Descent With Nonconvex Penalties,†J. Am. Stat. Assoc., vol. 106, no. 495, pp. 1125–1138, 2011, doi: 10.1198/jasa.2011.tm09738.
R. Tibshirani, J. Bien, J. Friedman, T. Hastie, N. Simon, J. Taylor, and R. J. Tibshirani, “Strong Rules for Discarding Predictors in Lasso-type Problems,†J. R. Stat. Soc. Ser. B, vol. 74, pp. 245–266, 2012.
T. Hastie, R. Tibshirani, and M. Wainwright, Statistical Learning with Sparsity: The Lasso and Generalizations. Chapman and Hall, 2015.
A. Agresti, Categorical Data Analysis, Second Edi. Wiley-Interscience, 2002.
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning DataMining, Inference, and Prediction, Second Edi. California: Springer, 2009.
J. Han, M. Kamber, and J. Pei, Data Mining Concepts and Techniques Third Edition. Elsevier, 2012.
T. Fawcett, “An Introduction to ROC Analysis,†Pattern Recognit. Lett., vol. 27, pp. 861–874, 2006.
T. Shaoxian, Y. Baohua, X. Xiaoli, C. Yufan, T. Xiaoyu, L. Hongfen, B Rui, S. Xiangjie, S. Ruohong, and Y. Wentao, “Characterisation of GATA3 expression in invasive breast cancer : differences in histological subtypes and immunohistochemically defined molecular subtypes,†J Clin Pathol, vol. 15, pp. 1–9, 2017.
H. Liu, J. Shi, M. L. Wilkerson, and F. Lin, “Immunohistochemical Evaluation of GATA3 Expression in Tumors and Normal Tissues: A Useful Immunomarker for Breast and Urothelial Carcinomas,†Am J Clin Pathol, vol. 138, pp. 57–64, 2012.
D. Ivanochko, L. Halabelian, E. Henderson, P. Savitsky, H. Jain, E. Marcon, S. Duan, A. Hutchinson, A. Seitova, D. Barsyte-Lovejoy, P. Filippakopoulos, J. Greenblatt, E. Lima-Fernandes, and C. H. Arrowsmith, “Direct interaction between the PRDM3 and PRDM16 tumor suppressors and the NuRD chromatin remodeling complex,†Nucleic Acids Res., vol. 47, no. 3, pp. 1225–1238, 2019, doi: 10.1093/nar/gky1192.
Y. J. Kim, M. Sung, E. Oh, M. Van Vranckena, J. Song, K. Jung, and Y. Choi, “Engrailed 1 overexpression as a potential prognostic marker in quintuple-negative breast cancer,†Cancer Biol. Ther., vol. 19, no. 4, pp. 335–345, 2018, doi: 10.1080/15384047.2018.1423913.
A. Assawamakin, S. Prueksaaroon, S. Kulawonganunchai, P. J. Shaw, Vara, Varavithya, T. Ruangrajitpakorn, and S. Tongsima, “Biomarker Selection and Classification of ‘“ - Omics â€â€™ Data Using a Two-Step Bayes Classification Framework,†Biomed Res. Int., 2013, doi: 10.1155/2013/148014.
Downloads
Published
Issue
Section
Citation Check
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License