Comparison of C4.5 Algorithm and Support Vector Machine in Predicting the Student Graduation Timeliness
DOI:
https://doi.org/10.15575/join.v6i1.608Keywords:
mahasiswa, algoritma c4.5, support vector machine, prediksi kelulusan, staiAbstract
References
Suhardjono, G. Wiajaya, and H. Abdul, “Prediksi Waktu Kelulusan Mahasiswa Menggunakan Svm Berbasis Pso,†Bianglala Inform., vol. 7, no. 2, pp. 97–101, 2019.
R. P. S. Putri and I. Waspada, “Penerapan Algoritma C4.5 pada Aplikasi Prediksi Kelulusan Mahasiswa Prodi Informatika,†Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 4, no. 1, p. 1, 2018.
A. Pratama, R. C. Wihandika, and D. E. Ratnawati, “Implementasi Algoritma Support Vector Machine (SVM) untuk Prediksi Ketepatan Waktu Kelulusan Mahasiswa,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. March, pp. 1704–1708, 2018.
E. Supriyadi and D. I. Sensuse, “Optimasi Algoritma Support Vector Machine Dengan Particle Swarm Optimization Dalam Mendeteksi Ketepatan Waktu Kelulusan Mahasiswa : Studi Kasus Poltek Lp3i Jakarta ‘Kampus Depok,’†vol. 1, no. 1, pp. 163–174, 2015.
I. P. Astuti, “Prediksi Ketepatan Waktu Kelulusan Dengan Algoritma Data Mining C4.5,†Fountain Informatics J., vol. 2, no. 2, pp. 41–45, 2017.
A. Rohman and M. Rochcham, “Komparasi Metode Klasifikasi Data Mining Untuk Prediksi Kelulusan Mahasiswa,†Neo Tek., vol. 5, no. 1, 2019.
C. N. Dengen, Kusrini, and E. T. Luthfi, “Implementasi Decision Tree Untuk Prediksi Kelulusan Mahasiswa Tepat Waktu,†J. Ilm. SISFOTENIKA, vol. 10, no. 1, pp. 1–11, 2020.
A. Fahrudin, L. Listiyoko, P. Surya, and A. Maksum, “Prediksi Peringkat Kelulusan Mahasiswa Untuk Menentukan Strategi Pemasaran Kampus Menggunakan Pohon Keputusan,†no. November, 2017.
I. Iskandar et al., “Prediksi Kelulusan Mahasiswa Menggunakan Algoritma Decision Tree C4 . 5 Dengan Teknik Pruning,†J. Ilmu Komput. dan Sist. Inf., vol. 6, no. 1, pp. 64–68, 2018.
A. Andie, “Penerapan Decision Tree Untuk Menganalisis Kemungkinan Pengunduran Diri Calon Mahasiswa Baru,†Technologia, vol. 7, no. 1, pp. 8–14, 2016.
Y. B. Samponu and K. Kusrini, “Optimasi Algoritma Naive Bayes Menggunakan Metode Cross Validation Untuk Meningkatkan Akurasi Prediksi Tingkat Kelulusan Tepat Waktu,†J. ELTIKOM, vol. 1, no. 2, pp. 56–63, 2018.
D. T. Larose and C. D. Larose, Discovering Knowledge in Data: An Introduction to Data Mining, 2nd ed. Canada: Wiley-Interscience, 2014.
Downloads
Published
Issue
Section
Citation Check
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License