Identification of White Blood Cells Using Machine Learning Classification Based on Feature Extraction

Authors

  • Anwar Siswanto Musliman Informatics Engineering Master Program, Universitas Ahmad Dahlan, Indonesia
  • Abdul Fadlil Departement of Electrical Engineering, Universitas Ahmad Dahlan, Indonesia
  • Anton Yudhana Departement of Electrical Engineering, Universitas Ahmad Dahlan, Indonesia

DOI:

https://doi.org/10.15575/join.v6i1.704

Keywords:

Sel Darah Putih Gray Level Co-occurrence Matrix K-nearest Neighbor Naïve Bayes MultiLayer Perceptron

Abstract

In various disease diagnoses, one of the parameters is white blood cells, consisting of eosinophils, basophils, neutrophils, lymphocytes, and monocytes. Manual identification takes a long time and tends to be subjective depending on the staff's experience, so the automatic identification of white blood cells will be faster and more accurate. White blood cells are identified by examining a colored blood smear (SADT) and examined under a digital microscope to obtain a cell image. Image identification of white blood cells is determined through HSV color space segmentation (Hue, Saturation Value) and feature extraction of the Gray Level Cooccurrence Matrix (GLCM) method using the Angular Second Moment (ASM), Contrast, Entropy, and Inverse Different Moment (IDM) features. The purpose of this study was to identify white blood cells by comparing the classification accuracy of the K-nearest neighbor (KNN), Naïve Bayes Classification (NBC), and Multilayer Perceptron (MLP) methods. The classification results of 100 training data and 50 white blood cell image testing data. Tests on the KNN, NBC, and MLP methods yielded an accuracy of 82%, 80%, and 94%, respectively. Therefore, MLP was chosen as the best classification model in the identification of white blood cells.

Author Biography

Anwar Siswanto Musliman, Informatics Engineering Master Program, Universitas Ahmad Dahlan

Manajer SIMRS

References

R. Ardina and S. Rosalinda, “Morfologi Eosinofil Pada Apusan Darah Tepi Menggunakan Pewarnaan Giemsa, Wright, dan Kombinasi Wright-Giemsa,†J. Surya Med., vol. 3, no. 2, pp. 5–12, Feb. 2018, doi: 10.33084/jsm.v3i2.91.

D. Arwie and Islawati, “Penentuan Kriteria Penilaian Kesan Jumlah Leukosit Pada Pemeriksaan Apusan Darah Tepi,†J. Kesehat. Panrita Husada, vol. 3, no. 2, pp. 118–127, Sep. 2018, doi: 10.37362/jkph.v3i2.188.

A. Setiawan, E. Suryani, and , W., “Segmentasi Citra Sel Darah Merah Berdasarkan Morfologi Sel Untuk Mendeteksi Anemia Defisiensi Besi,†J. Teknol. Inf. ITSmart, vol. 3, no. 1, 2016, doi: 10.20961/its.v3i1.638.

M. N. Khasanah, A. Harjoko, and I. Candradewi, “Klasifikasi Sel Darah Putih Berdasarkan Ciri Warna dan Bentuk dengan Metode K-Nearest Neighbor (K-NN),†IJEIS (Indonesian J. Electron. Instrum. Syst., vol. 6, no. 2, p. 151, Oct. 2016, doi: 10.22146/ijeis.15254.

D. S. Alham and D. Herumurti, “Segmentasi Dan Perhitungan Sel Darah Putih Menggunakan Operasi Morfologi Dan Transformasi Watershed,†INFORMAL Informatics J., vol. 4, no. 2, 2019, doi: 10.19184/isj.v4i2.13347.

R. Widodo, A. W. Widodo, and A. Supriyanto, “Pemanfaatan Ciri Gray Level Co-Occurrence Matrix ( GLCM ) Citra Buah Jeruk Keprok ( Citrus reticulata Blanco ) untuk Klasifikasi Mutu,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 11, 2018.

A. Siswanto, A. Fadlil, and A. Yudhana, “Ekstraksi Ciri Metode Gray Level Co-Occurrence Matrix Untuk Identifikasi Sel Darah Putih,†JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 5, no. 2, 2020, doi: 10.31328/jointecs.v5i2.1334.

Z. E. Fitri, L. N. Y. Syahputri, and A. M. N. Imron, “Classification of White Blood Cell Abnormalities for Early Detection of Myeloproliferative Neoplasms Syndrome Based on K-Nearest Neighbor,†Sci. J. Informatics, vol. 7, no. 1, pp. 136–142, Jun. 2020, doi: 10.15294/sji.v7i1.24372.

A. A. Mahran, R. K. Hapsari, and H. Nugroho, “Penerapan Naive Bayes Gaussian Pada Klasifikasi Jenis Jamur Berdasarkan Ciri Statistik Orde Pertama,†Netw. Eng. Res. Oper., vol. 5, no. 2, 2020, doi: 10.21107/nero.v5i2.165

A. N. Liyantoko, I. Candradewi, and A. Harjoko, “Klasifikasi Sel Darah Putih dan Sel Limfoblas Menggunakan Metode Multilayer Perceptron Backpropagation,†IJEIS (Indonesian J. Electron. Instrum. Syst., vol. 9, no. 2, 2019, doi: 10.22146/ijeis.49943.

A. F. Hastawan, R. Septiana, and Y. E. Windarto, “Perbaikan hasil segmentasi hsv pada citra digital menggunakan metode segmentasi rgb grayscale,†Edu Komputika J., vol. 6, no. 1, 2019, doi: 10.15294/EDUKOMPUTIKA.V6I1.23025.

N. N. Arisa and C. Fatichah, “Perhitungan dan pemisahan sel darah putih berdasarkan Centroid dengan menggunakan metode multi pass voting dan k-means pada citra sel acute leukemia,†JUTI J. Ilm. Teknol. Inf., vol. 16, no. 2, p. 105, Oct. 2018, doi: 10.12962/j24068535.v16i2.a661.

G. A. Pradipta and P. D. Wulaning Ayu, “Perbandingan segmentasi citra telur ayam menggunakan metode otsu berdasarkan perbedaan ruang warna rgb dan hsv,†JST (Jurnal Sains dan Teknol., vol. 6, no. 1, 2017, doi: 10.23887/jst-undiksha.v6i1.9329.

H. Sanusi, S. H. S., and D. T. Susetianingtias, “Pembuatan aplikasi klasifikasi citra daun menggunakan ruang warna rgb dan hsv,†J. Ilm. Inform. Komput., vol. 24, no. 3, 2019, doi: 10.35760/ik.2019.v24i3.2323.

S. Saifullah, S. Sunardi, and A. Yudhana, “Perbandingan segmentasi pada citra asli dan citra kompresi wavelet untuk identifikasi telur,†Ilk. J. Ilm., 2016, doi: 10.33096/ilkom.v8i3.75.190-196.

S. I. Syafi’i, R. T. Wahyuningrum, and A. Muntasa, “Segmentasi obyek pada citra digital menggunakan metode otsu thresholding,†J. Inform., 2016, doi: 10.9744/informatika.13.1.1-8.

K. Novar Setiawan and I. M. Suwija Putra, “Klasifikasi Citra Mammogram Menggunakan Metode K-Means, GLCM, dan Support Vector Machine (SVM),†J. Ilm. Merpati (Menara Penelit. Akad. Teknol. Informasi), 2018, doi: 10.24843/jim.2018.v06.i01.p02.

Y. Agussationo, I. Soesanti, and W. Najib, “Klasifikasi Citra X-Ray Diagnosis Tuberkulosis Berbasis Fitur Statistis,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 3, 2018, doi: 10.29207/resti.v2i3.523.

S. Saifudin and A. Fadlil, “Sistem identifikasi citra kayu berdasarkan tekstur menggunakan gray level coocurrence matrix (glcm) dengan klasifikasi jarak euclidean,†SINERGI, 2015, doi: 10.22441/sinergi.2015.3.003.

R. A. Surya, A. Fadlil, and A. Yudhana, “Identification of Pekalongan Batik Images Using Backpropagation Method,†in Journal of Physics: Conference Series, 2019, vol. 1373, no. 1, doi: 10.1088/1742-6596/1373/1/012049.

S. Saifullah, S. Sunardi, and A. Yudhana, “Analisis Ekstraks Ciri Fertilitas Telur Ayam Kampung dengan Grey Level Cooccurrence Matrix,†J. Nas. Tek. ELEKTRO, 2017, doi: 10.25077/jnte.v6n2.376.2017.

F. Yunita, “Diabetes Mellitus Menggunakan Metode K-Nearest Neighbor ( K-Nn ),†Bappeda, vol. 2, 2016.

M. A. Bianto, K. Kusrini, and S. Sudarmawan, “Perancangan Sistem Klasifikasi Penyakit Jantung Mengunakan Naïve Bayes,†Creat. Inf. Technol. J., vol. 6, no. 1, 2020, doi: 10.24076/citec.2019v6i1.231.

M. Sofie and A. Rizal, “Klasifikasi citra rekaman sinyal elektrokardiogram menggunakan metode analisis tekstur, k-nn dan multilayer perceptron,†Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 7, no. 1, 2016, doi: 10.24176/simet.v7i1.509.

Downloads

Published

2021-06-17

Issue

Section

Article

Citation Check