Sentiment Analysis about Large-Scale Social Restrictions in Social Media Twitter Using Algoritm K-Nearest Neighbor

Authors

  • Ikhsan Romli Industrial Engineering, Pelita Bangsa University, Indonesia http://orcid.org/0000-0003-0242-4221
  • Shanti Prameswari R Information Technology, Pelita Bangsa University, Indonesia
  • Antika Zahrotul Kamalia Information Technology, Pelita Bangsa University, Indonesia

DOI:

https://doi.org/10.15575/join.v6i1.670

Keywords:

Sentiment Analysis, K-Nearest Neighbor, Euclidean Distance, Cosine Similarity, Manhattan Distance

Abstract

Sentiment analysis is a data processing to recognize topics that people talk about and their sentiments toward the topics, one of which in this study is about large-scale social restrictions (PSBB). This study aims to classify negative and positive sentiments by applying the K-Nearest Neighbor algorithm to see the accuracy value of 3 types of distance calculation which are cosine similarity, euclidean, and manhattan distance for Indonesian language tweets about large-scale social restrictions (PSBB) from social media twitter. With the results obtained, the K-Nearest Neighbor accuracy by the Cosine Similarity distance 82% at k = 3, K-Nearest Neighbor by the Euclidean Distance with an accuracy of 81% at k = 11 and K-Nearest Neighbor by Manhattan Distance with an accuracy 80% at k = 5, 7, 9, 11, and 13. So, in this study the K-Nearest Neighbor algorithm with the Cosine Similarity Distance calculation gets the highest point.

Author Biography

Ikhsan Romli, Industrial Engineering, Pelita Bangsa University

Teknik Industri

References

E. Frank and I. H. Witten;, Dara Mining; Practical Machine Learning Tools and Techniques. United State of America: Elsevier, 2005.

B. LIU, Sentiment analysis. USA: Cambridge University Press, 2015.

We Are Social and Hootsuite, “Digital DATA OVERVEW 2019: Indonesia,†Glob. Digit. Insights, p. 17, 2019, [Online]. Available: https://datareportal.com/reports/digital-2020-indonesia.

L. Fitton, M. Gruen, and L. Poston, Twitter for Dummies. 2009.

S. K. R. Indonesia, “Keterangan Pers Presiden RI mengenai Program Perlindungan Sosial menghadapi Dampak Pandemi COVID-19,†2020. https://setkab.go.id/program-pelindungan-sosial-menghadapi-dampak-pandemi-covid-19-31-maret-2020-di-istana-kepresidenan-bogor-provinsi-jawa-barat/ (accessed Jun. 07, 2020).

P. M. P. Antonio Mucherino, Petraq J. Papajorgji, Data Mining in Agriculture, vol. 53, no. 9. London New York: Springer Science + Business Media, 2009.

J. Samuel, G. G. M. N. Ali, M. M. Rahman, E. Esawi, and Y. Samuel, “COVID-19 public sentiment insights and machine learning for tweets classification,†Inf., vol. 11, no. 6, pp. 1–22, 2020, doi: 10.3390/info11060314.

D. Whitenack, using the Go Programming Language. Packt Publishing, 2017.

S. vanden Broucke and B. Baesens, Practical Web Scraping for Data Science. 2018.

Z. C. Francesco Poldi, “Twint Project,†2018. https://github.com/twintproject (accessed Aug. 09, 2020).

T. ROSA, R. PRIMARTHA, and A. WIJAYA, “Comparison of Distance Measurement Methods on K-Nearest Neighbor Algorithm For Classification,†vol. 172, no. Siconian 2019, pp. 358–361, 2020, doi: 10.2991/aisr.k.200424.054.

F. K. R. Mahfud, N. S. Mudawamah, and W. Hariyanto, “Sentiment Analysis of Perpustakaan Nasional Republik Indonesia Through Social Media Twitter,†Matics, vol. 12, no. 1, p. 90, 2020, doi: 10.18860/mat.v12i1.8973.

G. Miner, J. E. IV, T. Hill, R. Nisbet, D. Delen, and A. Fast, Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications. United Kingdom: Elsevier, 2012.

D. Nettleton, Commercial Data Mining: Processing, Analysis and Modeling for Predictive Analytics Projects. 2014.

Anand Rajaraman and J. D. Ullman, Mining of Massive Datasets. Palo Alto, CA: Cambridge University Press, 2011.

C. Sammut and G. I. Webb, Encyclopedia of Machine Learning and Data Mining. 2017.

A. A. Puspitasari and E. Santoso, “Klasifikasi Dokumen Tumbuhan Obat Menggunakan Metode Improved k-Nearest Neighbor,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 2, pp. 486–492, 2018.

O. Nurdiana, J. Jumadi, and D. Nursantika, “Perbandingan Metode Cosine Similarity Dengan Metode Jaccard Similarity Pada Aplikasi Pencarian Terjemah Al-Qur’an Dalam Bahasa Indonesia,†J. Online Inform., vol. 1, no. 1, p. 59, 2016, doi: 10.15575/join.v1i1.12.

R. Layton, Learning Data Mining with Python. 2015.

Downloads

Published

2021-06-17

Issue

Section

Article

Citation Check

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.