Sentiment Analysis for the Brazilian Anesthesiologist Using Multi-Layer Perceptron Classifier and Random Forest Methods
DOI:
https://doi.org/10.15575/join.v7i1.900Keywords:
sentiment analysis, random forest, Multi-Layer Perceptron Classifier, twitter, sexual harassmentAbstract
References
L. A. Rudman, E. Borgida & B. A. Robertson. Suffering in silence: Procedural justice versus gender socialization issues in university sexual harassment grievance procedures. Basic and Applied Social Psychology, 17(4), 519–541. 1995. https://doi.org/10.1207/s15324834basp1704_6
T. Luo, S. Chen, G. Xu, J. Zhou, Sentiment Analysis. In: Trust-based Collective View Prediction. Springer, New York, NY. 2013,https://doi.org/10.1007/978-1-4614-7202-5_4
D. A. Alboaneen, H. Tianfield and Y. Zhang, 2017, Sentiment analysis via multi-layer perceptron trained by meta-heuristic optimisation 2017 IEEE International Conference on Big Data (Big Data), pp. 4630-4635, doi: 10.1109/BigData.2017.8258507
Jyoti Budhwar, Sukhdip Singh, 2021, Sentiment Analysis based Method for Amazon Product Reviews, International Journal Of Engineering Research & Technology (Ijert) Icact – 2021 (Volume 09 – Issue 08)
J. Kusuma, B. Herawan, W. Wanayumini and R. Rosnelly “Komparasi Metode Multi Layer Perceptron (MLP) dan Support Vector Machine (SVM) untuk Klasifikasi Kanker Payudara Komparasi Metode Multi Layer Perceptron (MLP) dan Support Vector Machine (SVM) untuk Klasifikasi Kanker Payudara†2022 in Multimedia Artificial Intelligence Networking Database 7:1, 51-60, June 2022.MIND, vol.7 no 1 pp 51 – 60, Juni 2022.
Dashtipour, K., Gogate, M., Adeel, A., Ieracitano, C., Larijani, H., Hussain, A. (2018). Exploiting Deep Learning for Persian Sentiment Analysis. In: , et al. Advances in Brain Inspired Cognitive Systems. BICS 2018. Lecture Notes in Computer Science, vol 10989. Springer, Cham. https://doi.org/10.1007/978-3-030-00563-4_58.
D.R. Vivas, M. Javier, B. Victor, O. L. G'omez and J. H. Reina. “Neural-Network Quantum States: A Systematic Review.†2022.
A. Maher & Hussain, Suhail & Ustun, T. Selim & Sarker, Mahidur & Hannan, M. A. & Mohamed, Ramizi & Ali, Jamal & Mekhilef, Saad & Milad, Abdalrhman. Artificial Neural Networks Based Optimization Techniques: A Review. Electronics. 10. 2689. 10.3390/electronics10212689. 2021
S. Saifullah, Y. Fauziah, and A. S. Aribowo (2021), "Comparison of Machine Learning for Sentiment Analysis in Detecting Anxiety Based on Social Media Data," DOI: 10.26555/jifo.v15i1.a20111.
G. Biau and E. Scornet. A random forest guided tour. Test, 25(2):197–227, 2016.
K. Budiman, N. Zaatsiyah, U. Niswah, and F. Faizi, “Analysis of Sexual Harassment Tweet Sentiment on Twitter in Indonesia using Naive Bayes Method through National Institute of Standard and Technology Digital Forensic Acquisition Approachâ€, JAIST, vol. 2, no. 2, pp. 21-30, Oct. 2020.
Y. Al Amrani, M. Lazaar, K.E. El Kadiri, Random forest and support vector machine based hybrid approach to sentiment analysis Procedia Comput. Sci., 127 (2018), pp. 511-520
Mantoro, M. Merdianti and M. A. Ayu, "Sentiment Analysis of the Papuan Movement on Twitter Using Naïve Bayes Algorithm," 2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED), Sukabumi, Indonesia, 2021, pp. 1-5. doi: 10.1109/ICCED53389.2021.9664868.
T. Mantoro, M. A. Ayu, R. T. Handayanto. Machine Learning Approach for Sentiment Analysis in Crime Information Retrieval, 3rd International Conference of Computer And Informatics Engineering IC2IE 2020, Jakarta, 15-16 Sept 2020.
B. Balachander, P. S. J. Sentimental Analysis of Twitter Data Using Tweepy and Textblob. International Journal of Advanced Science and Technology, 2020 29(3), 6537 - 6544. Retrieved from http://sersc.org/journals/index.php/IJAST/article/view/7243
Z. Drus and H. Khalid, “Sentiment analysis in social media and its application: Systematic literature review,†Procedia Comput. Sci., vol.161, pp. 707–714, 2019, doi: 10.1016/j.procs.2019.11.174.
C.D. Manning, P. Raghavan and H. Schütze, Introduction to Information Retrieval, Cambridge University Press. 2008. Retrieved from https://nlp.stanford.edu/IR-book/information-retrieval-book.html.
Bahrawi. Sentiment Analysis Using Random Forest Algorithm Online Social Media Based. Journal Of Information Technology and Its Utilization, Volume 2, Issue 2, December-2019: 29-332. h.29-33..
V. A. Fitri, R. Andreswari and M. A. Hasibuan, "Sentiment analysis of social media Twitter with case of AntiLGBT campaign in Indonesia using Naïve Bayes, decision tree, and random forest algorithm," Procedia Computer Science, vol. 161, pp. 765-772, 2019.
R. Sari and R. Y. Hayuningtyas, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Pada Wisata TMII Berbasis Website†Indones. J. Softw. Eng., vol. 5, no. 2, pp. 51–60, 2019, doi: 10.31294/ijse.v5i2.6957.
I. G. S. Mas Diyasa, N. M. I. Marini Mandenni, M. I. Fachrurrozi, S. I. Pradika, K. R. Nur Manab and N. R. Sasmita, "Twitter Sentiment Analysis as an Evaluation and Service Base On Python Textblob", IOP Conf. Ser. Mater. Sci. Eng., vol. 1125, no. 1, pp. 012034, 2021.
M.A. Ayu, S.S. Wijaya, T. Mantoro, An automatic lexicon generation for Indonesian news sentiment analysis: A case on governor elections in Indonesia, Indonesian Journal of Electrical Engineering and Computer Science, 16 (3), pp. 1555-1561, 2019.
R. Kurniasari, R. Santoso, and A. Prahutama, "Analisis Kecenderungan Laporan Masyarakat Pada “LAPORGUB..!†Provinsi Jawa Tengah Menggunakan Text Mining Dengan Fuzzy C-Means Clustering," Jurnal Gaussian, vol. 10, no. 4, pp. 544-553, Dec. 2021. https://doi.org/10.14710/j.gauss.v10i4.33101.
S. S. Chai, W. L. Cheah, K. L. Goh, Y. H. R. Chang, K. Y. Sim, K. O. Chin, "A Multilayer Perceptron Neural Network Model to Classify Hypertension in Adolescents Using Anthropometric Measurements: A Cross-Sectional Study in Sarawak, Malaysia", Computational and Mathematical Methods in Medicine, vol. 2021, Article ID 2794888, 11 pages, 2021. https://doi.org/10.1155/2021/2794888.
F. Heimerl, S. Lohmann, S. Lange and T. Ertl, "Word Cloud Explorer: Text Analytics Based on Word Clouds," 2014 47th Hawaii International Conference on System Sciences, 2014, pp. 1833-1842, doi: 10.1109/HICSS.2014.231.
K. Khadijah and R. Kusumaningrum. “Ensemble Classifier untuk Klasifikasi Kanker Payudara.†IT JOURNAL RESEARCH AND DEVELOPMENT, 2019, https://doi.org/10.25299/itjrd.2019.vol4(1).3540.
A. Setiawan., I.G. S. M. Diyasa, M. Hatta, and E. Y. Puspaningrum. “Mixture gaussian V2 based microscopic movement detection of human spermatozoa†International Journal of Advances in Intelligent Informatics, Vol. 6 (2), pp. 210-222, 2020.
I. Sunni dan D. H. Widyantoro, "Analisis Sentimen Dan Ekstraksi Topik Penentu Sentimen Pada Opini Terhadap Tokoh Publik" Jurnal Sarjana Institut Teknologi Bandung Bidang Teknik Elektro dan Informatika, vol. 1, no. 2, pp. 200-206, Jul. 2022.
A. Primajaya and B. N. Sari, "Random Forest Algorithm for Prediction of Precipitation," Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM), vol. 1, no. 1, pp. 27-31, 2018.
Downloads
Published
Issue
Section
Citation Check
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License