The Comparison of Audio Analysis Using Audio Forensic Technique and Mel Frequency Cepstral Coefficient Method (MFCC) as the Requirement of Digital Evidence
DOI:
https://doi.org/10.15575/join.v6i2.702Keywords:
Audio Forensic, Pitch Formant Spectogram, MFCC DTW KNN, Voice IdentificationAbstract
References
A. Subki, “Suara Voice Changer dengan Rekaman Suara,†Univeritas Islam Indonesia, Yogyakarta, 2017.
I. Riadi, A. Yudhana, and M. C. F. Putra, “Forensic Tool Comparison on Instagram Digital Evidence Based on Android with The NIST Method,†Sci. J. Informatics, vol. 5, no. 2, pp. 235–247, 2018, doi: 10.15294/sji.v5i2.16545.
G. Wicaksono and Y. Prayudi, “Teknik Forensika Audio Untuk Analisa Suara Pada Barang Bukti Digital,†Semnas Unjani. Semnas Unjani, Bandung, pp. 1–6, 2013.
V. A. H. Firdaus, “Forensik audio pada rekaman suara,†Sch. Electr. Eng. Informatics Inst. Technol. Bandung Bandung, Indones., p. 1, 2016.
R. Umar, I. Riadi, and A. Hanif, “Analisis Bentuk Pola Suara Menggunakan Ekstraksi Ciri Mel-Frequencey Cepstral Coefficients (MFCC),†CogITo Smart J., vol. 4, no. 2, p. 294, 2019, doi: 10.31154/cogito.v4i2.130.294-304.
H. Malik, “Acoustic environment identification and its applications to audio forensics,†IEEE Trans. Inf. Forensics Secur., vol. 8, no. 11, pp. 1827–1837, 2013, doi: 10.1109/TIFS.2013.2280888.
H. Zhao and H. Malik, “Audio recording location identification using acoustic environment signature,†IEEE Trans. Inf. Forensics Secur., vol. 8, no. 11, pp. 1746–1759, 2013, doi: 10.1109/TIFS.2013.2278843.
A. P. Saputra, H. Mubarok, and N. Widiyasono, “Analisis Digital Forensik pada File Steganography ( Studi kasus : Peredaran Narkoba ),†Tek. Inform. dan Sist. Inf., vol. 3, no. 1, pp. 179–190, 2009.
R. R. Huizen, N. K. D. A. Jayanti, and D. P. Hostiadi, “Analisis Pengaruh Sampling Rate Dalam Melakukan Identifikasi Pembicara Pada Rekaman Audio,†Konferensi Nasional Sistem & Informatika. pp. 9–10, 2015.
M. Al-Azhar Nuh, “Audio Forensics : Theory and Analysis,†pp. 1–38, 2011.
D. K. Putra, I. Iwut, and R. D. Atmaja, “Simulasi Dan Analisis Speaker Recognition Menggunakan Metode Mel Frequency Cepstrum Coefficient (MFCC) Dan Gaussian Mixture Model (GMM),†eProceedings Eng., vol. 4, no. 2, pp. 1766–1772, 2017.
A. Aligarh and B. C. Hidayanto, “Implementasi Metode Forensik dengan Menggunakan Pitch, Formant, dan Spectrogram untuk Analisis Kemiripan Suara Melalui Perekam Suara Telepon Genggam Pada Lingkungan yang Bervariasi,†J. Tek. ITS, vol. 5, no. 2, 2016, doi: 10.12962/j23373539.v5i2.16980.
A. Subki, B. Sugiantoro, and Y. Prayudi, “Analisis Rekaman Suara Voice Changer dan Rekaman Suara Asli Menggunakan Metode Audio Forensik,†Indones. J. Netw. Secur., vol. 7, no. 1, p. 1, 2018, [Online]. Available: http://ijns.org/journal/index.php/ijns/article/view/39/38.
A. Kurniawan, “Verifikasi Suara menggunakan Jaringan Syaraf Tiruan dan Ekstraksi Ciri Mel Frequency Cepstral Coefficient,†J. Sist. Inf. Bisnis, vol. 7, no. 1, p. 32, 2017, doi: 10.21456/vol7iss1pp32-38.
Hans Kalveram and Peter Meissner, “Itakura-saito clustering and rate distortion functions for a composite source model of speech,†vol. 18, pp. 195–216, 1989.
B. S. Deva and I. Mardianto, “Teknik Audio Forensik Menggunakan Metode Analisis Formant Bandwidth, Pitch dan Analisis Likelihood Ratio,†Ultimatics, vol. 10, no. 2, pp. 67–72, 2019, doi: 10.31937/ti.v10i2.936.
U. Rusydi, “Analisis Statistik Manipulasi Pitch Suara,†J. Mob. Forensics, vol. 1, no. 1, pp. 1–12, 2019, [Online]. Available: http://journal2.uad.ac.id/index.php/mf/article/view/702.
V. R. C. Putri and Sunarno, “Analisis Rekaman Suara Menggunakan Teknik Audio Forensik Untuk Keperluan Barang Bukti Digital,†Unnes Phys. J., vol. 3, no. 1, 2014.
A. Irawan, “Perbandingan Metode Itakura-Saito Distance dan Manual Statistik (Pitch, Formant, Spectogram) untuk Akurasi Identifikasi Suara pada Audio Forensik,†Universitas Islam Indonesia, 2019.
A. Wicaksono, S. Adinandra, and Y. Prayudi, “Penggabungan Metode Itakura Saito Distance dan Backpropagation Neural Network untuk Peningkatan Akurasi Suara pada Audio Forensik ( Combining Itakura Saito Distance and Backpropagation Neural Network Methods to Improve Sound Accuracy in Audio Forensic ),†JUITA - J. Inform., vol. 8, no. November, pp. 225–233, 2020.
M. N. Rabbani, A. Rizal, and F. Y. Suratman, “Implementasi Kunci Berbasis Suara Menggunakan Metode Mel Frequency Frequency Cepstral Coefficient (MFCC),†vol. 3, no. 3, pp. 3998–4007, 2016.
R. A. Sadewa, T. A. B. Wirayuda, and S. Sa’adah, “Implementasi Speaker Recognition Untuk Otentikasi Menggunakan Modified Mfcc–Vector Quantization Algoritma LBG,†eProceedings Eng., vol. 2, no. 1, pp. 1453–1463, 2015.
F. Elkusnandi, Adiwijaya, and U. N. Wisesty, “Implementasi Sistem Pengenalan Ucapan Bahasa Indonesia Menggunakan Kombinasi MFCC dan PCA Berbasis HMM,†vol. 5, no. 2, pp. 3608–3622, 2018.
I. S. Permana, Y. Indrawaty, and A. Zulkarnain, “Implementasi Metode Mfcc Dan Dtw Untuk Pengenalan Jenis Suara Pria Dan Wanita,†MIND J., vol. 3, no. 1, pp. 61–76, 2019, doi: 10.26760/mindjournal.v3i1.61-76.
A. Setiawan, A. Hidayatno, and R. R. Isnanto, “Aplikasi Pengenalan Ucapan dengan Ekstraksi Mel-Frequency Cepstrum Coefficients (MFCC) Melalui Jaringan Syaraf Tiruan (JST) Learning Vector Quantization (LVQ) untuk Mengoperasikan Kursor Komputer,†Apl. Pengenalan Ucapan dengan Ekstraksi Mel-Frequency Cepstrum Coefficients Melalui Jar. Syaraf Tiruan Learn. Vector Quantization untuk Mengoperasikan Kursor Komput., vol. 13, no. 3, pp. 82–86, 2011, doi: 10.12777/transmisi.13.3.82-86.
R. Umar, I. Riadi, A. Hanif, and S. Helmiyah, “Identification of speaker recognition for audio forensic using k-nearest neighbor,†Int. J. Sci. Technol. Res., vol. 8, no. 11, pp. 3846–3850, 2019.
M. Azizah, A. Hidayatno, and Y. Christyono, “Aplikasi Pengenal Pengucap Berbasis Identifikasi Suara Dengan Ekstraksi Ciri Mel-Frequency Cepstrum Coefficients ( Mfcc ) dan Kuantisasi Vektor†Transient, vol. 6, no. 4, pp. 639–643, 2017.
I. Fadli, “Kendali Pintu Air Otomatis Berbasis Speech Recognition Menggunakan Metode MFCC dan Jaringan Syaraf Tiruan,†vol. XV, no. 2, pp. 56–61, 2016.
M. Al-Azhar Nuh, Digital Forensics Practical Guidlines for Computer Investigation. Jakarta, 2012.
Mustafa, I. Riadi, and R. Umar, “Rancangan Investigasi Forensik E-mail dengan Metode National Institute of Standards and Technology (NIST),†Snst Ke-9, vol. 9, pp. 121–124, 2018.
M. Susanti, B. Susilo, and D. Andreswari, “Aplikasi Speech-To-Text Dengan Metode Mel Frequency Cepstral Coefficient ( MFCC ) Dan Hidden Markov Model ( HMM ) Dalam Pencarian Kode,†J. Rekursif, vol. 6, no. 1, pp. 48–58, 2018.
B. E. Koenig, “Spectrographic voice identification: A forensic survey,†J. Acoust. Soc. Am., vol. 79, no. 6, pp. 2088–2090, 1986, doi: 10.1121/1.393170.
Downloads
Published
Issue
Section
Citation Check
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License