The Comparison of Audio Analysis Using Audio Forensic Technique and Mel Frequency Cepstral Coefficient Method (MFCC) as the Requirement of Digital Evidence

Authors

  • Helmy Dzulfikar Informatics Department of Post Graduate Program, Universitas Islam Indonesia, Yogyakarta, Indonesia
  • Sisdarmanto Adinandra Informatics Department of Post Graduate Program, Universitas Islam Indonesia, Yogyakarta, Indonesia
  • Erika Ramadhani Informatics Department of Post Graduate Program, Universitas Islam Indonesia, Yogyakarta, Indonesia

DOI:

https://doi.org/10.15575/join.v6i2.702

Keywords:

Audio Forensic, Pitch Formant Spectogram, MFCC DTW KNN, Voice Identification

Abstract

Audio forensics is the application of science and scientific methods in handling digital evidence in the form of audio. In this regard, the audio supports the disclosure of various criminal cases and reveals the necessary information needed in the trial process. So far, research related to audio forensics is more on human voices that are recorded directly, either by using a voice recorder or voice recordings on smartphones, which are available on Google Play services or iOS Store. This study compares the analysis of live voices (human voices) with artificial voices on Google Voice and other artificial voices. This study implements the audio forensic analysis, which involves pitch, formant, and spectrogram as the parameters. Besides, it also analyses the data by using feature extraction using the Mel Frequency Cepstral Coefficient (MFCC) method, the Dynamic Time Warping (DTW) method, and applying the K-Nearest Neighbor (KNN) algorithm. The previously made live voice recording and artificial voice are then cut into words. Then, it tests the chunk from the voice recording. The testing of audio forensic techniques with the Praat application obtained similar words between live and artificial voices and provided 40,74% accuracy of information. While the testing by using the MFCC, DTW, KNN methods with the built systems by using Matlab, obtained similar word information between live voice and artificial voice with an accuracy of 33.33%.

Author Biography

Helmy Dzulfikar, Informatics Department of Post Graduate Program, Universitas Islam Indonesia, Yogyakarta

Mahasiswa Magister Informatika UII

References

A. Subki, “Suara Voice Changer dengan Rekaman Suara,†Univeritas Islam Indonesia, Yogyakarta, 2017.

I. Riadi, A. Yudhana, and M. C. F. Putra, “Forensic Tool Comparison on Instagram Digital Evidence Based on Android with The NIST Method,†Sci. J. Informatics, vol. 5, no. 2, pp. 235–247, 2018, doi: 10.15294/sji.v5i2.16545.

G. Wicaksono and Y. Prayudi, “Teknik Forensika Audio Untuk Analisa Suara Pada Barang Bukti Digital,†Semnas Unjani. Semnas Unjani, Bandung, pp. 1–6, 2013.

V. A. H. Firdaus, “Forensik audio pada rekaman suara,†Sch. Electr. Eng. Informatics Inst. Technol. Bandung Bandung, Indones., p. 1, 2016.

R. Umar, I. Riadi, and A. Hanif, “Analisis Bentuk Pola Suara Menggunakan Ekstraksi Ciri Mel-Frequencey Cepstral Coefficients (MFCC),†CogITo Smart J., vol. 4, no. 2, p. 294, 2019, doi: 10.31154/cogito.v4i2.130.294-304.

H. Malik, “Acoustic environment identification and its applications to audio forensics,†IEEE Trans. Inf. Forensics Secur., vol. 8, no. 11, pp. 1827–1837, 2013, doi: 10.1109/TIFS.2013.2280888.

H. Zhao and H. Malik, “Audio recording location identification using acoustic environment signature,†IEEE Trans. Inf. Forensics Secur., vol. 8, no. 11, pp. 1746–1759, 2013, doi: 10.1109/TIFS.2013.2278843.

A. P. Saputra, H. Mubarok, and N. Widiyasono, “Analisis Digital Forensik pada File Steganography ( Studi kasus : Peredaran Narkoba ),†Tek. Inform. dan Sist. Inf., vol. 3, no. 1, pp. 179–190, 2009.

R. R. Huizen, N. K. D. A. Jayanti, and D. P. Hostiadi, “Analisis Pengaruh Sampling Rate Dalam Melakukan Identifikasi Pembicara Pada Rekaman Audio,†Konferensi Nasional Sistem & Informatika. pp. 9–10, 2015.

M. Al-Azhar Nuh, “Audio Forensics : Theory and Analysis,†pp. 1–38, 2011.

D. K. Putra, I. Iwut, and R. D. Atmaja, “Simulasi Dan Analisis Speaker Recognition Menggunakan Metode Mel Frequency Cepstrum Coefficient (MFCC) Dan Gaussian Mixture Model (GMM),†eProceedings Eng., vol. 4, no. 2, pp. 1766–1772, 2017.

A. Aligarh and B. C. Hidayanto, “Implementasi Metode Forensik dengan Menggunakan Pitch, Formant, dan Spectrogram untuk Analisis Kemiripan Suara Melalui Perekam Suara Telepon Genggam Pada Lingkungan yang Bervariasi,†J. Tek. ITS, vol. 5, no. 2, 2016, doi: 10.12962/j23373539.v5i2.16980.

A. Subki, B. Sugiantoro, and Y. Prayudi, “Analisis Rekaman Suara Voice Changer dan Rekaman Suara Asli Menggunakan Metode Audio Forensik,†Indones. J. Netw. Secur., vol. 7, no. 1, p. 1, 2018, [Online]. Available: http://ijns.org/journal/index.php/ijns/article/view/39/38.

A. Kurniawan, “Verifikasi Suara menggunakan Jaringan Syaraf Tiruan dan Ekstraksi Ciri Mel Frequency Cepstral Coefficient,†J. Sist. Inf. Bisnis, vol. 7, no. 1, p. 32, 2017, doi: 10.21456/vol7iss1pp32-38.

Hans Kalveram and Peter Meissner, “Itakura-saito clustering and rate distortion functions for a composite source model of speech,†vol. 18, pp. 195–216, 1989.

B. S. Deva and I. Mardianto, “Teknik Audio Forensik Menggunakan Metode Analisis Formant Bandwidth, Pitch dan Analisis Likelihood Ratio,†Ultimatics, vol. 10, no. 2, pp. 67–72, 2019, doi: 10.31937/ti.v10i2.936.

U. Rusydi, “Analisis Statistik Manipulasi Pitch Suara,†J. Mob. Forensics, vol. 1, no. 1, pp. 1–12, 2019, [Online]. Available: http://journal2.uad.ac.id/index.php/mf/article/view/702.

V. R. C. Putri and Sunarno, “Analisis Rekaman Suara Menggunakan Teknik Audio Forensik Untuk Keperluan Barang Bukti Digital,†Unnes Phys. J., vol. 3, no. 1, 2014.

A. Irawan, “Perbandingan Metode Itakura-Saito Distance dan Manual Statistik (Pitch, Formant, Spectogram) untuk Akurasi Identifikasi Suara pada Audio Forensik,†Universitas Islam Indonesia, 2019.

A. Wicaksono, S. Adinandra, and Y. Prayudi, “Penggabungan Metode Itakura Saito Distance dan Backpropagation Neural Network untuk Peningkatan Akurasi Suara pada Audio Forensik ( Combining Itakura Saito Distance and Backpropagation Neural Network Methods to Improve Sound Accuracy in Audio Forensic ),†JUITA - J. Inform., vol. 8, no. November, pp. 225–233, 2020.

M. N. Rabbani, A. Rizal, and F. Y. Suratman, “Implementasi Kunci Berbasis Suara Menggunakan Metode Mel Frequency Frequency Cepstral Coefficient (MFCC),†vol. 3, no. 3, pp. 3998–4007, 2016.

R. A. Sadewa, T. A. B. Wirayuda, and S. Sa’adah, “Implementasi Speaker Recognition Untuk Otentikasi Menggunakan Modified Mfcc–Vector Quantization Algoritma LBG,†eProceedings Eng., vol. 2, no. 1, pp. 1453–1463, 2015.

F. Elkusnandi, Adiwijaya, and U. N. Wisesty, “Implementasi Sistem Pengenalan Ucapan Bahasa Indonesia Menggunakan Kombinasi MFCC dan PCA Berbasis HMM,†vol. 5, no. 2, pp. 3608–3622, 2018.

I. S. Permana, Y. Indrawaty, and A. Zulkarnain, “Implementasi Metode Mfcc Dan Dtw Untuk Pengenalan Jenis Suara Pria Dan Wanita,†MIND J., vol. 3, no. 1, pp. 61–76, 2019, doi: 10.26760/mindjournal.v3i1.61-76.

A. Setiawan, A. Hidayatno, and R. R. Isnanto, “Aplikasi Pengenalan Ucapan dengan Ekstraksi Mel-Frequency Cepstrum Coefficients (MFCC) Melalui Jaringan Syaraf Tiruan (JST) Learning Vector Quantization (LVQ) untuk Mengoperasikan Kursor Komputer,†Apl. Pengenalan Ucapan dengan Ekstraksi Mel-Frequency Cepstrum Coefficients Melalui Jar. Syaraf Tiruan Learn. Vector Quantization untuk Mengoperasikan Kursor Komput., vol. 13, no. 3, pp. 82–86, 2011, doi: 10.12777/transmisi.13.3.82-86.

R. Umar, I. Riadi, A. Hanif, and S. Helmiyah, “Identification of speaker recognition for audio forensic using k-nearest neighbor,†Int. J. Sci. Technol. Res., vol. 8, no. 11, pp. 3846–3850, 2019.

M. Azizah, A. Hidayatno, and Y. Christyono, “Aplikasi Pengenal Pengucap Berbasis Identifikasi Suara Dengan Ekstraksi Ciri Mel-Frequency Cepstrum Coefficients ( Mfcc ) dan Kuantisasi Vektor†Transient, vol. 6, no. 4, pp. 639–643, 2017.

I. Fadli, “Kendali Pintu Air Otomatis Berbasis Speech Recognition Menggunakan Metode MFCC dan Jaringan Syaraf Tiruan,†vol. XV, no. 2, pp. 56–61, 2016.

M. Al-Azhar Nuh, Digital Forensics Practical Guidlines for Computer Investigation. Jakarta, 2012.

Mustafa, I. Riadi, and R. Umar, “Rancangan Investigasi Forensik E-mail dengan Metode National Institute of Standards and Technology (NIST),†Snst Ke-9, vol. 9, pp. 121–124, 2018.

M. Susanti, B. Susilo, and D. Andreswari, “Aplikasi Speech-To-Text Dengan Metode Mel Frequency Cepstral Coefficient ( MFCC ) Dan Hidden Markov Model ( HMM ) Dalam Pencarian Kode,†J. Rekursif, vol. 6, no. 1, pp. 48–58, 2018.

B. E. Koenig, “Spectrographic voice identification: A forensic survey,†J. Acoust. Soc. Am., vol. 79, no. 6, pp. 2088–2090, 1986, doi: 10.1121/1.393170.

Downloads

Published

2021-12-26

Issue

Section

Article

Citation Check

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.