Forensic Analysis of Web Scraping Documents on Carding Forums and Shops using Latent Dirichlet Allocation

Profiling Forensic and NLP Approaches for Cybercrime Investigation

Authors

DOI:

https://doi.org/10.15575/join.v10i2.1603

Keywords:

Carding Forum, Carding Shop, Cybercrime, Natural Language Processing, Web Scraping

Abstract

This research is based on the massive cybercrime activity in carding forums and carding shops. Based on the many victims and losses from these activities a cybercrime investigation action is needed by a digital forensic investigator. The purpose of this study is to develop a forensic carding investigation framework based on document analysis of web scraping results on carding forums and carding shops, which applies forensic profiling analysis methods and natural language processing based on the latent dirichlet allocation (LDA) algorithm. The tools used for web scraping in this study are WebHarvy Version 7.3.0.222. The tools used for data processing in this study are Microsoft Excel and Orange Data Mining. The conclusion of this study shows that the application of web scraping investigation techniques on carding forums and carding shops based on an carding investigation framework has been effective in collecting relevant data and analyzing the activities of cybercriminal appropriately. Overall, this study has succeeded in developing a more organized and data-driven approach to dealing with crimes in carding forums and carding shops, which can be a reference for further research and application in the field of digital forensic investigation.

References

[1] D. Buil-Gil, N. Lord, dan E. Barrett, “The Dynamics of Business, Cybersecurity and Cyber-Victimization: Foregrounding the Internal Guardian in Prevention,” Vict. Offender., vol. 16, no. 3, hal. 286–315, Apr 2021, doi: 10.1080/15564886.2020.1814468.

[2] B.-J. Koops, “The Internet and its Opportunities for Cybercrime,” Nijmegen, 09/2011, 2011. doi: 10.2139/ssrn.1738223.

[3] M. S. Malik dan U. Islam, “Cybercrime: an emerging threat to the banking sector of Pakistan,” J. Financ. Crime, vol. 26, no. 1, hal. 50–60, Jan 2019, doi: 10.1108/JFC-11-2017-0118.

[4] N. Teodoro, L. Gonçalves, dan C. Serrão, “NIST CyberSecurity Framework Compliance: A Generic Model for Dynamic Assessment and Predictive Requirements,” in 2015 IEEE Trustcom/BigDataSE/ISPA, Helsinki: IEEE, 2015, hal. 418–425. doi: 10.1109/Trustcom.2015.402.

[5] W. Ahmad, “Is Credit Card Fraud a Real Crime? Does it Really Cripple the E-Commerce Sector of E-Business?,” in 2008 International Conference on Management of e-Commerce and e-Government, Nanchang: IEEE, 2008, hal. 364–370. doi: 10.1109/ICMECG.2008.99.

[6] P. Grabosky, “The evolution of cybercrime, 2004-2014,” Canberra, 2014/58, 2014. doi: 10.2139/ssrn.2535605.

[7] V. Jirovský, A. Pastorek, M. Mühlhäuser, dan A. Tundis, “Cybercrime and Organized Crime,” in Proceedings of the 13th International Conference on Availability, Reliability and Security, in ARES ’18. New York, NY, USA: Association for Computing Machinery, 2018, hal. 1–5. doi: 10.1145/3230833.3233288.

[8] M. Yip, C. Webber, dan N. Shadbolt, “Trust among cybercriminals? Carding forums, uncertainty and implications for policing,” Polic. Soc., vol. 23, no. 4, hal. 516–539, Des 2013, doi: 10.1080/10439463.2013.780227.

[9] N. Kshetri, “The simple economics of cybercrimes,” IEEE Secur. Priv., vol. 4, no. 1, hal. 33–39, 2006, doi: 10.1109/MSP.2006.27.

[10] U. Agarwal, V. Rishiwal, S. Tanwar, dan M. Yadav, “Blockchain and crypto forensics: Investigating crypto frauds,” Int. J. Netw. Manag., vol. 34, no. 2, hal. e2255, Mar 2024, doi: 10.1002/nem.2255.

[11] M. Azhan dan S. Meraj, “Credit Card Fraud Detection using Machine Learning and Deep Learning Techniques,” in 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), Thoothukudi: IEEE, 2020, hal. 514–518. doi: 10.1109/ICISS49785.2020.9316002.

[12] B. Al Smadi dan M. Min, “A Critical review of Credit Card Fraud Detection Techniques,” in 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York: IEEE, 2020, hal. 732–736. doi: 10.1109/UEMCON51285.2020.9298075.

[13] K. J. Barker, J. D’Amato, dan P. Sheridon, “Credit card fraud: awareness and prevention,” J. Financ. Crime, vol. 15, no. 4, hal. 398–410, Jan 2008, doi: 10.1108/13590790810907236.

[14] Federal Trade Commission, “Identity Theft Reports,” Public Tableau. Diakses: 7 April 2024. [Daring]. Tersedia pada: https://public.tableau.com/app/profile/federal.trade.commission/viz/IdentityTheftReports/TheftTypesOverTime

[15] S. J. Ashraf dan M. Tilawat, Ed., “Credit Card Fraud Statistics: Losses to Explode $41 Billion by 2025!,” VPNRanks.com. Diakses: 13 Juni 2025. [Daring]. Tersedia pada: https://www.vpnranks.com/resources/credit-card-fraud-statistics/

[16] H. Agrawal, S. P. Singh, S. Dixit, P. Nagdev, V. P., dan S. Thaseen, “A Digital Forensic Analysis of Profiling and Avoidance of Websites Disseminating Disinformation,” in 2024 Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE), Vellore: IEEE, 2024, hal. 1–9. doi: 10.1109/ic-ETITE58242.2024.10493661.

[17] Y. Levy dan R. Gafni, “Introducing the concept of cybersecurity footprint,” Inf. Comput. Secur., vol. 29, no. 5, hal. 724–736, Jan 2021, doi: 10.1108/ICS-04-2020-0054.

[18] S. Sharmila dan C. Aparna, “Tracing footprints of anti-forensics and assuring secured data transmission in the cloud using an effective ECCDH and Kalman Filter,” J. Netw. Comput. Appl., vol. 221, hal. 103762, 2024, doi: 10.1016/j.jnca.2023.103762.

[19] V. B. Bollikonda dan K. Kiran, “Reconnaissance on Dark Web Trades and Traders Activities for Investigation,” in 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi: IEEE, 2024, hal. 1649–1653. doi: 10.23919/INDIACom61295.2024.10498813.

[20] W. Mazurczyk dan L. Caviglione, “Cyber reconnaissance techniques,” Communications of the ACM, vol. 64, no. 3, Association for Computing Machinery, New York, NY, USA, hal. 86–95, Februari 2021. doi: 10.1145/3418293.

[21] J. K. Pringle et al., “Forensic geoscience non-invasive detection and characterisation of underground clandestine complexes, bunkers, tunnels and firing ranges,” Forensic Sci. Int., vol. 359, hal. 112033, 2024, doi: 10.1016/j.forsciint.2024.112033.

[22] O. J. Ndubuisi, G. Adene, B. T. Sunday, C. E. Mbonu, dan A. U. Gift-Adene, “Digitally improving UK police surveillance and incidence response using real-time crowd reporting app: Digipolice,” Glob. J. Eng. Technol. Adv., vol. 18, no. 3, hal. 124–138, 2024, doi: 10.30574/gjeta.2024.18.3.0048.

[23] K. F. Steinmetz, B. P. Schaefer, C. G. Brewer, dan D. L. Kurtz, “The Role of Computer Technologies in Structuring Evidence Gathering in Cybercrime Investigations: A Qualitative Analysis,” Crim. Justice Rev., hal. 07340168231161091, Mar 2023, doi: 10.1177/07340168231161091.

[24] A. Valiño Ces, “The Importance of the Computer Undercover Agent as an Investigative Measure Against Cybercrime: A Special Reference to Child Pornography Crimes,” in Legal Developments on Cybersecurity and Related Fields, 1 ed., F. A. C. P. de Andrade, P. M. F. Freitas, dan J. R. de S. C. de Abreu, Ed., Cham: Springer International Publishing, 2024, hal. 145–165. doi: 10.1007/978-3-031-41820-4_9.

[25] Y. Vasoya, T. Modi, O. Patel, D. Kotak, K. Shah, dan K. Sabale, “A Comprehensive Exploration to Cybercrimes Investigation Techniques,” in 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi: IEEE, 2024, hal. 1046–1053. doi: 10.23919/INDIACom61295.2024.10498752.

[26] Y. Benhamou, “Website Blocking Injunctions Under Swiss Law: From Civil and Administrative Injunctions to Criminal Seizure or Forfeiture,” Expert Focus, no. 11, hal. 885–893, 2017, [Daring]. Tersedia pada: http://archive-ouverte.unige.ch/unige:98862

[27] E. A. Hidayat, “Kewenangan Penyadapan Badan Narkotika Nasional dalam Perspektif Undang-Undang Narkotika dan Undang-Undang Informasi dan Transaksi Elektronik,” Tadulako Master Law J., vol. 4, no. 2, hal. 129–145, 2020, [Daring]. Tersedia pada: http://103.245.72.41/index.php/TMLJ/article/view/197

[28] M. Kalacska dan M. Bouchard, “Using police seizure data and hyperspectral imagery to estimate the size of an outdoor cannabis industry,” Police Pract. Res., vol. 12, no. 5, hal. 424–434, Okt 2011, doi: 10.1080/15614263.2010.536722.

[29] K. Kopel, “Operation Seizing Our Sites: How the Federal Government is Taking Domain Names Without Prior Notice,” Berkeley Technol. Law J., vol. 28, no. 4, hal. 859–900, 2013, doi: 10.15779/Z384Q3M.

[30] S. de S. Sirisuriya, “A Comparative Study on Web Scraping,” in Proceedings of 8th International Research Conference, KDU, Colombo: General Sir John Kotelawala Defence University, 2015, hal. 135–140. [Daring]. Tersedia pada: http://ir.kdu.ac.lk/handle/345/1051

[31] ScrapeOps, “Differences of Web Scraping Vs Web Crawling Explained,” ScrapeOps. Diakses: 17 September 2024. [Daring]. Tersedia pada: https://scrapeops.io/web-scraping-playbook/web-scraping-vs-web-crawling/

[32] S. vanden Broucke dan B. Baesens, “From Web Scraping to Web Crawling,” in Practical Web Scraping for Data Science: Best Practices and Examples with Python, S. vanden Broucke dan B. Baesens, Ed., Berkeley, CA: Apress, 2018, hal. 155–172. doi: 10.1007/978-1-4842-3582-9_6.

[33] J. Maybir dan B. Chapman, “Web scraping of ecstasy user reports as a novel tool for detecting drug market trends,” Forensic Sci. Int. Digit. Investig., vol. 37, hal. 301172, 2021, doi: 10.1016/j.fsidi.2021.301172.

[34] C. Muehlethaler dan R. Albert, “Collecting data on textiles from the internet using web crawling and web scraping tools,” Forensic Sci. Int., vol. 322, hal. 110753, 2021, doi: 10.1016/j.forsciint.2021.110753.

[35] E. Sonmez dan K. S. Codal, “Analyzing a Dark Web forum page in the context of terrorism: a topic modeling approach,” Secur. J., 2024, doi: 10.1057/s41284-024-00421-9.

[36] P. Jin, N. Kim, S. Lee, dan D. Jeong, “Forensic investigation of the dark web on the Tor network: pathway toward the surface web,” Int. J. Inf. Secur., vol. 23, no. 1, hal. 331–346, 2024, doi: 10.1007/s10207-023-00745-4.

[37] R. Basheer dan B. Alkhatib, “Conceptualizing Discussions on the Dark Web: An Empirical Topic Modeling Approach,” Complexity, vol. 2024, no. 1, hal. 2775236, Jan 2024, doi: https://doi.org/10.1155/2024/2775236.

[38] W. Li, H. Chen, dan J. F. Nunamaker Jr., “Identifying and Profiling Key Sellers in Cyber Carding Community: AZSecure Text Mining System,” J. Manag. Inf. Syst., vol. 33, no. 4, hal. 1059–1086, Okt 2016, doi: 10.1080/07421222.2016.1267528.

[39] Á. Szigeti, R. Frank, dan T. Kiss, “Contribution to the harm assessment of darknet markets: topic modelling drug reviews on Dark0de Reborn,” Crime Sci., vol. 13, no. 1, hal. 13, 2024, doi: 10.1186/s40163-024-00211-z.

[40] G. Wiratmoko, H. Thamrin, dan E. W. Pamungkas, “Performance of Machine Learning Algorithms on Automatic Summarization of Indonesian Language Texts,” JOIN (Jurnal Online Inform., vol. 10, no. 1, hal. 196–204, 2025, doi: 10.15575/join.v10i1.1506.

[41] T. Alam dan R. Gupta, “Reviewing the Framework of Blockchain in Fake News Detection,” JOIN (Jurnal Online Inform., vol. 9, no. 2, hal. 286–296, 2024, doi: 10.15575/join.v9i2.1349.

[42] L. Greiner, “Sniper Forensics,” NetWorker, vol. 13, no. 4, Association for Computing Machinery, New York, hal. 8–10, 2009. doi: 10.1145/1655737.1655740.

[43] C. Pogue, “Sniper Forensics ‘One Shot, One Kill,’” DEFCON 18. DEF CON Communications, Inc., Las Vegas, hal. 1–33, 2010. [Daring]. Tersedia pada: https://archives.sector.ca/presentations09/Sector_SniperForensics92909_final%282%29.pdf

[44] G. M. Rao, B. R. Reddy, dan P. Vishnu, “Smart Web Investigation Framework,” in Innovations in Cyber Physical Systems, J. Singh, S. Kumar, dan U. Choudhury, Ed., Singapore: Springer Singapore, 2021, hal. 305–314. doi: 10.1007/978-981-16-4149-7_27.

[45] W. Gong et al., “Cyber victimization in hybrid space: an analysis of employment scams using natural language processing and machine learning models,” J. Crime Justice, hal. 1–22, 2025, doi: 10.1080/0735648X.2024.2448804.

[46] Altenen, “Altenen Forums - Images & Videos & Porn Accounts?,” Altenen. Diakses: 21 Maret 2024. [Daring]. Tersedia pada: https://altenens.is/forums/images-videos-porn-accounts????.469197/

[47] Invision Community, “carding.store - Cracking Tutorials,” carding.store. Diakses: 8 Juli 2024. [Daring]. Tersedia pada: https://carding.store/forum/20-cracking-tutorials/

[48] Astradumps, “Astra Dumps Shop,” Astra Dumps. Diakses: 21 Maret 2024. [Daring]. Tersedia pada: https://astradumps.com/shop/

[49] @cashout vendors, “Money-Heist.org Shop,” Money-Heist.org. Diakses: 8 Juli 2024. [Daring]. Tersedia pada: https://money-heist.org/shop/

[50] Similarweb LTD, “Top 10 altenens.is Competitors,” Similarweb LTD. Diakses: 26 Maret 2024. [Daring]. Tersedia pada: https://www.similarweb.com/website/altenens.is/competitors/

[51] J. Han, J. Kim, dan S. Lee, “5W1H-based Expression for the Effective Sharing of Information in Digital Forensic Investigations,” New York, 2020. doi: 10.48550/arXiv.2010.15711.

[52] SysNucleus, “WebHarvy.” SysNucleus, Kochi, 2024. [Daring]. Tersedia pada: https://www.webharvy.com/download.html

[53] Microsoft, “Microsoft Excel.” Microsoft, Redmond, 2024. [Daring]. Tersedia pada: https://www.microsoft.com/en-in/microsoft-365/excel

[54] J. Demšar et al., “Orange: Data Mining Toolbox in Python,” J. Mach. Learn. Res., vol. 14, no. 71, hal. 2349−2353, 2013, [Daring]. Tersedia pada: https://www.jmlr.org/papers/v14/demsar13a.html

[55] Zulhanif, “Pemodelan Topik dengan Latent Dirichlet Allocation,” in Seminar Nasional Pendidikan Matematika 2016, Surakarta: Universitas Muhammadiyah Surakarta, 2016, hal. 1–8. [Daring]. Tersedia pada: https://publikasiilmiah.ums.ac.id/handle/11617/7633

[56] D. M. Blei, A. Y. Ng, dan M. I. Jordan, “Latent Dirichlet Allocation,” J. Mach. Learn. Res., vol. 3, hal. 993–1022, 2003, [Daring]. Tersedia pada: https://jmlr.csail.mit.edu/papers/v3/blei03a.html

[57] D. M. Blei, “Probabilistic topic models,” Communications of the ACM, vol. 55, no. 4, Association for Computing Machinery, New York, NY, USA, hal. 77–84, April 2012. doi: 10.1145/2133806.2133826.

[58] F. B. Rodrigues, W. F. Giozza, R. de O. Albuquerque, dan L. J. G. Villalba, “Natural Language Processing Applied to Forensics Information Extraction With Transformers and Graph Visualization,” IEEE Trans. Comput. Soc. Syst., vol. 11, no. 4, hal. 4727–4743, 2024, doi: 10.1109/TCSS.2022.3159677.

[59] F. Amato, G. Cozzolino, V. Moscato, dan F. Moscato, “Analyse digital forensic evidences through a semantic-based methodology and NLP techniques,” Futur. Gener. Comput. Syst., vol. 98, hal. 297–307, 2019, doi: https://doi.org/10.1016/j.future.2019.02.040.

[60] F. I. Adristi, “Tesis Magister Informatika Fikri,” Github. Diakses: 14 Desember 2024. [Daring]. Tersedia pada: https://github.com/451Fikrie/Tesis-Magister-Informatika-Fikri

[61] J. Xiaoyu, “Legal and Regulatory Research on the Involvement of Third Parties in Criminal Electronic Data Forensics,” Sci. Law J., vol. 3, no. 1, hal. 20–24, 2024, doi: 10.23977/law.2024.030104.

[62] A. bin Jamil, R. J. Johari, A. Zarefar, dan M. M. Yudi, “An analysis of suspicious transaction reporting decisions in Malaysia’s money services business,” Edelweiss Appl. Sci. Technol., vol. 8, no. 1, hal. 24–32, 2024, doi: 10.55214/25768484.v8i1.413.

[63] K. Koo, M. Park, dan B. Yoon, “A Suspicious Financial Transaction Detection Model Using Autoencoder and Risk-Based Approach,” IEEE Access, vol. 12, hal. 68926–68939, 2024, doi: 10.1109/ACCESS.2024.3399824.

[64] A. A. N. O. Y. Darmadi dan N. S. Dananjaya, “Authority of the Financial Transaction Analysis Reporting Center in Tracing Hidden Trading Crimes,” Sociol. Jurisprud. J., vol. 7, no. 1, hal. 8–14, 2024, doi: 10.22225/scj.7.1.2024.8-14.

[65] S. M. R. Noval et al., “The Fusion of Blockchain, Pornography and Human Trafficking in A Global Digital Dragnet That Forms The Online Child Sex Trafficking,” Russ. Law J., vol. 11, no. 5s, hal. 1–19, 2023, [Daring]. Tersedia pada: https://cyberleninka.ru/article/n/the-fusion-of-blockchain-pornography-and-human-trafficking-in-a-global-digital-dragnet-that-forms-the-online-child-sex-trafficking

[66] T. Griné dan C. Teixeira Lopes, “A Social Media Tool for Domain-Specific Information Retrieval - A Case Study in Human Trafficking,” in Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2022. Communications in Computer and Information Science, vol 1752, I. Koprinska, P. Mignone, R. Guidotti, S. Jaroszewicz, H. Fröning, F. Gullo, P. M. Ferreira, D. Roqueiro, G. Ceddia, S. Nowaczyk, J. Gama, R. Ribeiro, R. Gavaldà, E. Masciari, Z. Ras, E. Ritacco, F. Naretto, A. Theissler, P. Biecek, W. Verbeke, G. Schiele, F. Pernkopf, M. Blott, I. Bordino, I. L. Danesi, G. Ponti, L. Severini, A. Appice, G. Andresini, I. Medeiros, G. Graça, L. Cooper, N. Ghazaleh, J. Richiardi, D. Saldana, K. Sechidis, A. Canakoglu, S. Pido, P. Pinoli, A. Bifet, dan S. Pashami, Ed., Cham: Springer Nature Switzerland, 2023, hal. 23–38.

[67] T. Alyahya dan F. Kausar, “Snapchat Analysis to Discover Digital Forensic Artifacts on Android Smartphone,” Procedia Comput. Sci., vol. 109, hal. 1035–1040, 2017, doi: 10.1016/j.procs.2017.05.421.

[68] K. Huie, M. Butler, dan A. Percy, “Identifying trends and patterns in offending and victimization on Snapchat: a rapid review,” Secur. J., vol. 37, no. 3, hal. 903–920, 2024, doi: 10.1057/s41284-023-00400-6.

[69] S. B. Yudhoyono dan A. Mattalatta, Undang-undang (UU) No. 44 Tahun 2008 Tentang Pornografi. Indonesia: JDIH BPK RI Database Peraturan, 2008, hal. 23. [Daring]. Tersedia pada: https://peraturan.bpk.go.id/Details/39740

[70] R.-T. Lo, W.-J. Hwang, dan T.-M. Tai, “SQL Injection Detection Based on Lightweight Multi-Head Self-Attention,” Applied Sciences, vol. 15, no. 2. hal. 571, 2025. doi: 10.3390/app15020571.

[71] K. Takyi, R.-M. O. M. Gyening, M. Kobinnah, M. A. Boateng, dan S. Boadu-Acheampong, “Enhancing SQL Injection Detection with Long Short-Term Memory Networks in Deep Learning,” Int. J. Open Inf. Technol., vol. 13, no. 1, hal. 7–13, 2025, [Daring]. Tersedia pada: http://www.injoit.org/index.php/j1/article/view/1978

[72] A. Mechri, M. A. Ferrag, dan M. Debbah, “SecureQwen: Leveraging LLMs for vulnerability detection in python codebases,” Comput. Secur., vol. 148, hal. 104151, 2025, doi: 10.1016/j.cose.2024.104151.

[73] S. Flowers, “Harnessing the hackers: The emergence and exploitation of Outlaw Innovation,” Res. Policy, vol. 37, no. 2, hal. 177–193, 2008, doi: 10.1016/j.respol.2007.10.006.

[74] J. Chen, S. He, dan X. Yang, “Platform Loophole Exploitation, Recovery Measures, and User Engagement: A Quasi-Natural Experiment in Online Gaming,” Inf. Syst. Res., vol. 35, no. 4, hal. 1609–1633, Nov 2023, doi: 10.1287/isre.2020.0416.

[75] A. Luthfi, “Documentation and Reporting ISO 27042:2015.” Universitas Islam Indonesia, Yogyakarta, hal. 29, 2024.

[76] R. Soesilo, Membuat Berita Acara dan Laporan Polisi Menurut KUHAP. Bogor: Politeia, 1985.

[77] I. Arifisnti, E. Kustriyono, dan A. Pramitasari, “Pola Interogasi Penyidik terhadap Tersangka pada Berita Acara Pemeriksaan Kasus Delik Aduan Tinjauan Linguistik Forensik,” Parafrasa J. Bahasa, Sastra, dan Pengajaran, vol. 6, no. 1, hal. 1–10, 2024, [Daring]. Tersedia pada: https://jurnal.unikal.ac.id/index.php/parafrasa/article/view/4668

[78] C. Baraniuk, “AlphaBay and Hansa dark web markets shut down,” BBC. Diakses: 14 Desember 2024. [Daring]. Tersedia pada: https://www.bbc.com/news/technology-40670010

[79] Office of Public Affairs U.S. Department of Justice, “AlphaBay, the Largest Online ‘Dark Market,’ Shut Down,” Office of Public Affairs U.S. Department of Justice. Diakses: 7 Maret 2024. [Daring]. Tersedia pada: https://www.justice.gov/opa/pr/alphabay-largest-online-dark-market-shut-down

[80] S.-T. Cheng, G.-J. Horng, C.-W. Hsu, dan Z.-Y. Su, “Per-user network access control kernel module with secure multifactor authentication,” J. Supercomput., vol. 80, no. 1, hal. 970–1008, 2024, doi: 10.1007/s11227-023-05480-0.

[81] A. Coscia, V. Dentamaro, S. Galantucci, A. Maci, dan G. Pirlo, “PROGESI: A PROxy Grammar to Enhance Web Application Firewall for SQL Injection Prevention,” IEEE Access, vol. 12, hal. 107689–107703, 2024, doi: 10.1109/ACCESS.2024.3438092.

[82] R. Ruiz, R. Winter, F. de F. Rosa, P. Shukla, dan H. Kazemian, “Brazil Method of Anti-Malware Evaluation and Cyber Defense Impacts,” J. Appl. Secur. Res., vol. 18, no. 4, hal. 925–941, Okt 2023, doi: 10.1080/19361610.2022.2104104.

[83] Council of Europe, Convention on Cybercrime. European Union: European Treaty Series - No. 185, 2001. [Daring]. Tersedia pada: https://rm.coe.int/1680081561

[84] A. M. Aminu, “International Criminal Police Organisation and the Challenges in the Fight against Cybercrime in Nigeria,” Kashere J. Polit. Int. Relations, vol. 2, no. 1, hal. 48–56, 2024, [Daring]. Tersedia pada: https://journals.fukashere.edu.ng/index.php/kjpir/article/view/178

[85] M. A. Ayanwale, I. T. Sanusi, R. R. Molefi, dan A. O. Otunla, “A Structural Equation Approach and Modelling of Pre-service Teachers’ Perspectives of Cybersecurity Education,” Educ. Inf. Technol., 2023, doi: 10.1007/s10639-023-11973-5.

[86] ARTICLE 19, Buku Panduan Moderasi Konten dan Kebebasan Berekspresi. Uni Eropa & UNESCO, 2023. [Daring]. Tersedia pada: https://www.article19.org/wp-content/uploads/2024/03/BAHASA-Final-SM4P-Content-moderation-handbook-7-Aug-ID-translated-revised-022924_YHM.pdf

[87] S. Bhagat dan D. P. Pravin, “Cybersecurity Awareness and Adaptive Behavior: Does Prior Exposure Lead to Adaptive Behavior?,” in AMCIS 2023 Proceedings, Panama City: AIS Electronic Library (AISel), 2023, hal. 23.

[88] Lanzarote, “Police Warn of ‘Carding’ Scam in The Canary Islands Costing Victims Thousands,” Canarian Weekly. Diakses: 14 Januari 2025. [Daring]. Tersedia pada: https://www.canarianweekly.com/posts/Police-warn-of-carding-scam-in-the-Canary-Islands-costing-victims-thousands

[89] D. Dunsin, M. C. Ghanem, K. Ouazzane, dan V. Vassilev, “A comprehensive analysis of the role of artificial intelligence and machine learning in modern digital forensics and incident response,” Forensic Sci. Int. Digit. Investig., vol. 48, hal. 301675, 2024, doi: 10.1016/j.fsidi.2023.301675.

[90] V. Gazeau, K. Gupta, dan M. K. An, “Enhancing Social Media Data Collection for Digital Forensic Investigations: A Web Parser Approach,” in 2024 International Conference on Computer, Information and Telecommunication Systems (CITS), Girona: IEEE, 2024, hal. 1–7. doi: 10.1109/CITS61189.2024.10607983.

[91] Z. Shahbazi dan Y.-C. Byun, “NLP-Based Digital Forensic Analysis for Online Social Network Based on System Security,” Int. J. Environ. Res. Public Health, vol. 19, no. 12, hal. 7027, 2022, doi: 10.3390/ijerph19127027.

[92] A. Muhariya, I. Riadi, Y. Prayudi, dan I. A. Saputro, “Utilizing K-means Clustering for the Detection of Cyberbullying Within Instagram Comments,” Ing. des Syst. d’Information, vol. 28, no. 4, hal. 939–949, 2023, doi: 10.18280/isi.280414.

[93] A. Muhariya, I. Riadi, dan Y. Prayudi, “Cyberbullying Analysis on Instagram Using K-Means Clustering,” JUITA J. Inform., vol. 10, no. 2, hal. 261–272, 2022, doi: 10.30595/juita.v10i2.14490.

[94] M. Zulfadhilah, Y. Prayudi, dan I. Riadi, “Cyber Profiling Using Log Analysis And K-Means Clustering,” Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 7, hal. 430–435, 2016, doi: 10.14569/IJACSA.2016.070759.

Downloads

Published

2025-08-17

Issue

Section

Article

Citation Check

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.