Detection of Fraudulent Financial Statement based on Ratio Analysis in Indonesia Banking using Support Vector Machine
DOI:
https://doi.org/10.15575/join.v5i2.646Keywords:
Classification, Feature, Financial Ratio, Fraudulent, Ratio AnalysisAbstract
Â
References
A. Lako, Laporan Keuangan & Konflik Kepentingan. Yogyakarta: Amara Books, 2007.
A. K. Rowland Bismark Fernando Pasaribu, “Fraud Laporan Keuangan Dalam Perspektif Fraud Triangle,†J. Ris. Akunt. dan Keuang. Fak. Bisnis, vol. 14, no. 1, 2018.
K. M. Fanning and K. O. Cogger, “Neural network detection of management fraud using published financial data,†Intellegent Syst. Accounting, Financ. Manag., 1998.
M. M. Clayton, J. C. Moorman, J. Wilkinson, M. Shackell, and G. Schaffer, “Data Mining : Computer-Adided Forensic Accounting Investigation Techniques,†in A Guide To Forensic Accounting Investigation, Second Edi., Hoboken: John Wiley & Sons, Inc., 2005, p. 554.
S. Prasmaulida, “Financial Statement Fraud Detection Using Perspective of Fraud Triangle Adopted By Sas No. 99,†Asia Pacific Fraud J., vol. 1, no. 2, p. 317, 2016, doi: 10.21532/apfj.001.16.01.02.24.
A. Arfiyadi and I. Anisykurlillah, “The Detection of Fraudulent Financial Statement with Fraud Diamond Analysis,†Account. Anal. J., vol. 5, no. 3, 2016.
N. K. A. Yulistyawati, I. M. S. Suardikha, and I. P. Sudana, “The analysis of the factor that causes fraudulent financial reporting with fraud diamond,†J. Akunt. Audit. Indones., vol. 23, no. 1, pp. 1–10, 2019, doi: 10.20885/jaai.vol23.iss1.art1.
M. Yesiariani and I. Rahayu, “Jurnal Akuntansi & Auditing Indonesia Deteksi financial statement fraud : Pengujian dengan fraud diamond,†vol. 21, no. 1, 2017.
Q. Deng and G. Mei, “Combining self-organizing map and K-means clustering for detecting fraudulent financial statements,†IEEE Int. Conf. Granul. Comput., 2009.
D. Yue, X. Wu, and N. Shen, “Logistic regression for detecting fraudulent financial statement of listed companies in China,†2009 Int. Conf. Artif. Intell. Comput. Intell., 2009.
Q. Deng, “Detection of fraudulent financial statements based on Naïve Bayes classifier,†5th Int. Conf. Comput. Sci. Educ., 2010.
E. Kirkos, C. Spathis, and Y. Manolopoulos, “Data Mining techniques for the detection of fraudulent financial statements,†Expert Syst. Appl., vol. 32, no. 4, pp. 995–1003, 2007, doi: 10.1016/j.eswa.2006.02.016.
M. L. Khodra, D. H. Widyantoro, E. A. Aziz, and B. R. Trilaksono, “Free Model of Sentence Classifier for Automatic Extraction of Topic Sentences,†vol. 5, no. 1, pp. 17–34, 2011.
S. Teufel and A. Athar, “Detection of Implicit Citations for Sentiment Detection,†Proc. ACL-12 Work. Discov. Struct. Sch. Discourse, Jeju Island, South Korea, 2012, no. July, pp. 18–26, 2012.
Y. Sibaroni, D. H. Widyantoro, and M. L. Khodra, “Extend Relation Identification in Scientific Papers Based On Supervised Machine Learning,†2016 Int. Conf. Adv. Comput. Sci. Inf. Syst. (ICACSIS 2016), 2016.
S. Chen, “Detection of fraudulent financial statements using the hybrid data mining approach,†Springerplus, vol. 5, no. 1, pp. 1–16, 2016, doi: 10.1186/s40064-016-1707-6.
Downloads
Published
Issue
Section
Citation Check
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License