Delineation of The Early 2024 Election Map: Sentiment Analysis Approach to Twitter Data


  • Nur Ulum Rahmanulloh Department of Statistical Computing, Politeknik Statistika STIS, Indonesia
  • Ibnu Santoso Department of Statistical Computing, Politeknik Statistika STIS, Indonesia



Politics, 2024 Election, Sentiment Analysis, Twitter


As a democratic country, the people hold an important role in determining power in Indonesia. The closest political agenda in Indonesia is the 2024 Election. A survey has been conducted by several private survey agencies regarding the 2024 political map which has revealed the top five names, namely Prabowo Subianto, Ganjar Pranowo, Anies Baswedan, Sandiaga Uno, and Ridwan Kamil. This study aims to describe the initial map of the 2024 Election through a sentiment analysis approach to Twitter data. This study uses tweet data that mentions five political figures during 2021. In general, the demographic condition of Twitter users that pros or cons to five political figures, among them: located on the Java, in the age group 19–29 years old, and male.  The sentiment analysis method used is supervised learning with different methods for each figure. The difference in methods adjusts the best evaluation value given in each figure. The results showed that the highest positive sentimental tweets and the highest number of pro accounts was about Ganjar Pranowo. On the other hand, the highest negative sentiment and the highest number of contra accounts was about Prabowo Subianto. Many words that often appear on a figure's positive sentiment are expressions of hope, prayer, and support. On negative tweets, the word that comes up a lot relating to the work field or work region of the figures. 

Author Biographies

Nur Ulum Rahmanulloh, Department of Statistical Computing, Politeknik Statistika STIS

Department of Statistical Computing

Ibnu Santoso, Department of Statistical Computing, Politeknik Statistika STIS

Department of Statistical Computing


M. Budiardjo, Dasar-Dasar Ilmu Politik, Jakarta: Gramedia, 2008.


S. Raharjo, Undang-Undang Pemilu 2019 Berdasarkan Undang-Undang Nomor 7 Tahun 2017 Tentang Pemilihan Umum, Jakarta: Bhuana Ilmu Populer, 2018.

BPS, Statistik Politik 2019: Pemilu 1955-2019, Jakarta: Badan Pusat Statistik, 2019.

SMRC, "Partai dan Calon Presiden: Kecenderungan Sikap Pemilih Menjelang 2024," Saiful Mujani Research & Consulting, Jakarta, 2021.

Charta Politika, "Rilis Survei Nasional: Evaluasi Kebijakan & Peta Politik Masa Pandemi," Charta Politika Indonesia, Jakarta, 2021.

Indikator, "Evaluasi Publik Terhadap Kinerja Penanganan Pandemi, Vaksinasi, dan Peta Elektoral Terkini," Indikator Politik Indonesia, Jakarta, 2021.

KedaiKOPI, "Laporan Hasil Survei Calon Pemimpin Indonesia 2024: Banjir Tokoh Menuju 2024," Lembaga Survei KedaiKOPI, Jakarta, 2021.

LSI, "Evaluasi Publik Terhadap Kondisi Nasional dan Peta Awal Pemilu 2024," Lembaga Survei Indonesia, Jakarta, 2021.

Poltracking, "Survei Nasional: Evaluasi 2 Tahun Pemerintahan Joko Widodo - Ma'ruf Amin & Peta Politik Elektoral Pilpres 2024," Poltracking Indonesia, Jakarta, 2021.

S. Kemp, "Digital 2021: Indonesia," Datareportal, 11 Februari 2021. [Online]. Available: [Accessed 6 November 2021].

S. N. J. Fitriyyah, N. Safriadi and E. E. Pratama, "Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes," Jurnal Edukasi dan Penelitian Informatika, pp. 279-285, 2019.

M. N. Habibi and Sunjana, "Analysis of Indonesia Politics Polarization before 2019 President Election Using Sentiment Analysis and Social Network Analysis," Modern Education and Computer Science, vol. 11, pp. 22-30, 2019.

R. Gustomy, "Pandemi ke Infodemi: Polarisasi Politik dalam Wacana Covid-19 Pengguna Twiiter," Jurnal Ilmiah Ilmu Pemerintahan, vol. 5, no. 2, pp. 190-205, 2020.

R. Mitchell, Web Scraping with Python, California: O'Reilly Media Inc., 2018.

C. Olston and M. Najork, Web Crawling, Massachusetts: now Publishers, 2010.

R. Liu, X. Yao, C. Guo and X. Wei, "Can We Forecast Presidential Election Using Twitter Data? An Integrative Modelling Approach," Annals of GIS, pp. 43-56, 2021.

D. Kurniawan, Pengenalan Machine Learning dengan Python, Jakarta: Elex Media Komputindo, 2022.

J. Brownlee, "A Gentle Introduction to Imbalanced Classification," 23 Desember 2019. [Online]. Available:

T. Ho, "Random decision forests," in International Conference on Document Analysis and Recognition (ICDAR), Montreal, 1995.

A. I. Schein and L. H. Ungar, "Active Learning for Logistic Regression: An evaluation," Machine Learning, vol. 68, no. 3, pp. 235-265, 2007.

K. Jaidka, M. M. Skoric, S. Ahmed and M. Hilbert, "Predicting Elections from Social Media: A Three-Country, Three-Method Comparative Study," Asian Journal of Communication, 2018.

Z. Wang, S. Hale, D. I. Adelani, P. Grabowicz, T. Hartman, F. Flock and D. Jurgens, "Demographic Inference and Representative Population Estimates from Multilingual Social Media Data," in WWW'19: The World Wide Web Conference, San Francisco, 2019.







Citation Check