Anatomy of Sentiment Analysis in Ontological, Epistemological, and Axiological Perspectives

Authors

  • M. Noer Fadli Hidayat Department of Electrical Engineering and Informatics, Universitas Negeri Malang and Department of Informatics Engineering, Universitas Nurul Jadid Probolinggo, Indonesia
  • Didik Dwi Prasetya Department of Electrical Engineering and Informatics, Universitas Negeri Malang, Indonesia
  • Triyanna Widiyaningtyas Department of Electrical Engineering and Informatics, Universitas Negeri Malang, Indonesia
  • Syaad Patmanthara Department of Electrical Engineering and Informatics, Universitas Negeri Malang, Indonesia

DOI:

https://doi.org/10.15575/join.v10i1.1228

Keywords:

Axiological, Epistemological, Ontological, Sentiment Analysis

Abstract

The aim of this article was to examine sentiment analysis methods from the perspective of the philosophy of science with three approaches, ontological, epistemological and axiological. This research used a qualitative research method (descriptive-analysis) with an ontological, epistemological and axiological approach that uses library research and document studies of previous research results. Data collection was carried out through books and reputable scientific journals on Scopus, ScienceDirect, IEEEXplore and Springer Link. The results of this research showed that sentiment analysis from an ontological perspective describes the definition, development and relationship of sentiment with social reality. Meanwhile, from an epistemological perspective, sentiment analysis is viewed from how the source of knowledge is obtained, explaining the production of sentiment analysis knowledge, and several ways of working that can be applied in studies. Axiologically, sentiment analysis can see the function and value resulting from sentiment analysis, as well as discussing the results of interpretation from sentiment analysis studies. These findings showed the development of sentiment analysis in answering various problems to improve the quality of sustainable services in various fields.

References

[1] D. Antypas, A. Preece, and J. Camacho-Collados, “Negativity Spreads Faster: A Large-Scale Multilingual Twitter Analysis on the Role of Sentiment in Political Communication,” Feb. 2022, doi: 10.1016/j.osnem.2023.100242.

[2] L. Yang, Y. Li, J. Wang, and R. S. Sherratt, “Sentiment Analysis for E-Commerce Product Reviews in Chinese Based on Sentiment Lexicon and Deep Learning,” IEEE Access, vol. 8, pp. 23522–23530, 2020, doi: 10.1109/ACCESS.2020.2969854.

[3] Z. Kastrati, A. S. Imran, and A. Kurti, “Weakly Supervised Framework for Aspect-Based Sentiment Analysis on Students’ Reviews of MOOCs,” IEEE Access, vol. 8, pp. 106799–106810, 2020, doi: 10.1109/ACCESS.2020.3000739.

[4] Amsal Bakhtiar, Filsafat Ilmu. Raja Grafindo, 2017.

[5] F. T. Giuntini, M. T. Cazzolato, M. de J. D. dos Reis, A. T. Campbell, A. J. M. Traina, and J. Ueyama, “A Review on Recognizing Depression in Social Networks: Challenges and Opportunities,” J Ambient Intell Humaniz Comput, vol. 11, no. 11, pp. 4713–4729, Nov. 2020, doi: 10.1007/s12652-020-01726-4.

[6] Jujun S. Suriasumantri, Tentang hakikat ilmu, dalam Ilmu dalam Perspektif . Jakarta: Gramedia, 1985.

[7] A. T. Haryono, R. Sarno, and K. R. Sungkono, “Transformer-Gated Recurrent Unit Method for Predicting Stock Price Based on News Sentiments and Technical Indicators,” IEEE Access, vol. 11, pp. 77132–77146, 2023, doi: 10.1109/ACCESS.2023.3298445.

[8] T. Hariguna and A. Ruangkanjanases, “Adaptive sentiment analysis using multioutput classification: a performance comparison,” PeerJ Comput Sci, vol. 9, 2023, doi: 10.7717/peerj-cs.1378.

[9] L. Kurniasari and A. Setyanto, “SENTIMENT ANALYSIS USING RECURRENT NEURAL NETWORK-LSTM IN BAHASA INDONESIA,” 2020.

[10] B. Andrian, T. Simanungkalit, I. Budi, and A. F. Wicaksono, “Sentiment Analysis on Customer Satisfaction of Digital Banking in Indonesia,” 2022. [Online]. Available: www.ijacsa.thesai.org

[11] G. A. Buntoro, R. Arifin, G. N. Syaifuddiin, A. Selamat, O. Krejcar, and H. Fujita, “Implementation of a Machine Learning Algorithm for Sentiment Analysis of Indonesia‘s 2019 Presidential Election,” IIUM Engineering Journal, vol. 22, no. 1, pp. 78–92, 2021, doi: 10.31436/IIUMEJ.V22I1.1532.

[12] E. Di. Madyatmadja, B. N. Yahya, and C. Wijaya, “Contextual Text Analytics Framework for Citizen Report Classification: A Case Study Using the Indonesian Language,” IEEE Access, vol. 10, pp. 31432–31444, 2022, doi: 10.1109/ACCESS.2022.3158940.

[13] E. Sutoyo and A. Almaarif, “Twitter sentiment analysis of the relocation of Indonesia’s capital city,” Bulletin of Electrical Engineering and Informatics, vol. 9, no. 4, pp. 1620–1630, Aug. 2020, doi: 10.11591/eei.v9i4.2352.

[14] M. Bordoloi and S. K. Biswas, “Sentiment analysis: A survey on design framework, applications and future scopes,” Artif Intell Rev, Nov. 2023, doi: 10.1007/s10462-023-10442-2.

[15] A. Ghosh, B. C. Dhara, C. Pero, and S. Umer, “A multimodal sentiment analysis system for recognizing person aggressiveness in pain based on textual and visual information,” J Ambient Intell Humaniz Comput, vol. 14, no. 4, pp. 4489–4501, Apr. 2023, doi: 10.1007/s12652-023-04567-z.

[16] G. Xiong, K. Yan, and X. Zhou, “A distributed learning based sentiment analysis methods with Web applications,” World Wide Web, vol. 25, no. 5, pp. 1905–1922, Sep. 2022, doi: 10.1007/s11280-021-00994-0.

[17] P. Mehta and S. Pandya, “A Review On Sentiment Analysis Methodologies, Practices And Applications,” INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, vol. 9, p. 2, 2020, [Online]. Available: www.ijstr.org

[18] K. Cortis et al., “SemEval-2017 Task 5: Fine-Grained Sentiment Analysis on Financial Microblogs and News,” 2017. [Online]. Available: http://stocktwits.com/

[19] M. Rodríguez-Ibánez, A. Casánez-Ventura, F. Castejón-Mateos, and P. M. Cuenca-Jiménez, “A Review on Sentiment Analysis from Social Media Platforms,” Aug. 01, 2023, Elsevier Ltd. doi: 10.1016/j.eswa.2023.119862.

[20] P. G. Preethi, V. Uma, and A. Kumar, “Temporal sentiment analysis and causal rules extraction from tweets for event prediction,” in Procedia Computer Science, Elsevier B.V., 2015, pp. 84–89. doi: 10.1016/j.procs.2015.04.154.

[21] J. A. Balazs and J. D. Velásquez, “Opinion Mining and Information Fusion: A survey,” Information Fusion, vol. 27, pp. 95–110, Jan. 2016, doi: 10.1016/j.inffus.2015.06.002.

[22] M. Birjali, M. Kasri, and A. Beni-Hssane, “A comprehensive survey on sentiment analysis: Approaches, challenges and trends,” Knowl Based Syst, vol. 226, Aug. 2021, doi: 10.1016/j.knosys.2021.107134.

[23] I. Chaturvedi, E. Cambria, R. E. Welsch, and F. Herrera, “Distinguishing between facts and opinions for sentiment analysis: Survey and challenges,” Information Fusion, vol. 44, pp. 65–77, Nov. 2018, doi: 10.1016/j.inffus.2017.12.006.

[24] F. Hemmatian and M. K. Sohrabi, “A survey on classification techniques for opinion mining and sentiment analysis,” Artif Intell Rev, vol. 52, no. 3, pp. 1495–1545, Oct. 2019, doi: 10.1007/s10462-017-9599-6.

[25] Sri Shakthi Institute of Engineering and Technology, Institute of Electrical and Electronics Engineers. Madras Section, All-India Council for Technical Education, and Institute of Electrical and Electronics Engineers, 2020 International Conference on Computer Communication and Informatics : January 22-24, 2020, Coimbatore, India. 2020.

[26] M. M. Chandio and M. Sah, “Brexit Twitter Sentiment Analysis: Changing Opinions About Brexit and UK Politicians,” 2020, pp. 1–11. doi: 10.1007/978-3-030-38501-9_1.

[27] A. Ray, P. K. Bala, S. Chakraborty, and S. A. Dasgupta, “Exploring the impact of different factors on brand equity and intention to take up online courses from e-Learning platforms,” Journal of Retailing and Consumer Services, vol. 59, Mar. 2021, doi: 10.1016/j.jretconser.2020.102351.

[28] N. Songkram, S. Chootongchai, H. Osuwan, Y. Chuppunnarat, and N. Songkram, “Students’ adoption towards behavioral intention of digital learning platform,” Educ Inf Technol (Dordr), Sep. 2023, doi: 10.1007/s10639-023-11637-4.

[29] M. Al-Hail, M. F. Zguir, and M. Koç, “University students’ and educators’ perceptions on the use of digital and social media platforms: A sentiment analysis and a multi-country review,” iScience, vol. 26, no. 8, Aug. 2023, doi: 10.1016/j.isci.2023.107322.

[30] S. Alam, I. Mahmud, S. M. S. Hoque, R. Akter, and S. M. Sohel Rana, “Predicting students’ intention to continue business courses on online platforms during the Covid-19: An extended expectation confirmation theory,” International Journal of Management Education, vol. 20, no. 3, Nov. 2022, doi: 10.1016/j.ijme.2022.100706.

[31] A. Liapis, V. Maratou, T. Panagiotakopoulos, C. Katsanos, and A. Kameas, “UX evaluation of open MOOC platforms: a comparative study between Moodle and Open edX combining user interaction metrics and wearable biosensors,” Interactive Learning Environments, 2022, doi: 10.1080/10494820.2022.2048674.

[32] R. Rahmawati, Sukidin, and P. Suharso, “Factor analysis of ruangguru application use on high school students in Jember,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, May 2021. doi: 10.1088/1755-1315/747/1/012026.

[33] S. F. Persada, A. Oktavianto, B. A. Miraja, R. Nadlifatin, P. F. Belgiawan, and A. A. N. P. Redi, “Public perceptions of online learning in developing countries: A study using the ELK stack for sentiment analysis on twitter,” International Journal of Emerging Technologies in Learning, vol. 15, no. 9, pp. 94–109, 2020, doi: 10.3991/ijet.v15i09.11579.

[34] B. Su and J. Peng, “Sentiment Analysis of Comment Texts on Online Courses Based on Hierarchical Attention Mechanism,” Applied Sciences (Switzerland), vol. 13, no. 7, Apr. 2023, doi: 10.3390/app13074204.

[35] H. Kim and G. Qin, “Summarizing Students’ Free Responses for an Introductory Algebra-Based Physics Course Survey Using Cluster and Sentiment Analysis,” IEEE Access, vol. 11, pp. 89052–89066, 2023, doi: 10.1109/ACCESS.2023.3305260.

[36] J. Joung and H. M. Kim, “Approach for Importance-Performance Analysis of Product Attributes from Online Reviews,” Journal of Mechanical Design, vol. 143, no. 8, pp. 1–14, Aug. 2021, doi: 10.1115/1.4049865.

[37] P. Bhuvaneshwari, A. N. Rao, Y. H. Robinson, and M. N. Thippeswamy, “Sentiment analysis for user reviews using Bi-LSTM self-attention based CNN model,” Multimed Tools Appl, vol. 81, no. 9, pp. 12405–12419, Apr. 2022, doi: 10.1007/s11042-022-12410-4.

[38] Z. Wang, P. Gao, and X. Chu, “Sentiment Analysis from Customer-Generated Online Videos on Product Review Using Topic Modeling and Multi-Attention BLSTM,” Advanced Engineering Informatics, vol. 52, pp. 1–11, Apr. 2022, doi: 10.1016/j.aei.2022.101588.

[39] H. J. Alantari, I. S. Currim, Y. Deng, and S. Singh, “An empirical comparison of machine learning methods for text-based sentiment analysis of online consumer reviews,” International Journal of Research in Marketing, vol. 39, no. 1, pp. 1–19, Mar. 2022, doi: 10.1016/j.ijresmar.2021.10.011.

[40] D. Antypas, A. Preece, and J. Camacho-Collados, “Negativity spreads faster: A large-scale multilingual twitter analysis on the role of sentiment in political communication,” Online Soc Netw Media, vol. 33, Jan. 2023, doi: 10.1016/j.osnem.2023.100242.

[41] P. Chauhan, N. Sharma, and G. Sikka, “Application of Twitter sentiment analysis in election prediction: a case study of 2019 Indian general election,” Soc Netw Anal Min, vol. 13, no. 1, Dec. 2023, doi: 10.1007/s13278-023-01087-8.

[42] A. Yavari, H. Hassanpour, B. R. Cami, and M. Mahdavi, “Election Prediction Based on Sentiment Analysis using Twitter Data,” International Journal of Engineering, Transactions B: Applications, vol. 35, no. 2, pp. 372–379, Feb. 2022, doi: 10.5829/ije.2022.35.02b.13.

[43] Y. Ouyang, B. Guo, J. Zhang, Z. Yu, and X. Zhou, “SentiStory: multi-grained sentiment analysis and event summarization with crowdsourced social media data,” Pers Ubiquitous Comput, vol. 21, no. 1, pp. 97–111, Feb. 2017, doi: 10.1007/s00779-016-0977-x.

[44] H. Smith and W. Cipolli, “The Instagram/Facebook ban on graphic self-harm imagery: A sentiment analysis and topic modeling approach,” Policy Internet, vol. 14, no. 1, pp. 170–185, Mar. 2022, doi: 10.1002/poi3.272.

[45] J. S. Suriasumantri, Filasafat Ilmu. Jakarta: Pustaka Sinar Harapan, 2007.

[46] W. Mays, The philosophy of Whitehead. Routledge, 2014.

[47] S. Endraswara, Filsafat Ilmu. Media Pressindo, 2021.

[48] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learning Word Vectors for Sentiment Analysis,” 2011.

[49] U. M. Dahir and F. K. Alkindy, “Utilizing Machine Learning for Sentiment Analysis of IMDB Movie Review Data,” International Journal of Engineering Trends and Technology, vol. 71, no. 5, pp. 18–26, May 2023, doi: 10.14445/22315381/IJETT-V71I5P203.

[50] M. T. H. K. Tusar and M. T. Islam, “A Comparative Study of Sentiment Analysis Using NLP and Different Machine Learning Techniques on US Airline Twitter Data,” in Proceedings of International Conference on Electronics, Communications and Information Technology, ICECIT 2021, Khulna, Bangladesh: Institute of Electrical and Electronics Engineers Inc., Sep. 2021, pp. 1–4. doi: 10.1109/ICECIT54077.2021.9641336.

[51] K. M. Hasib, M. A. Habib, N. A. Towhid, and M. I. H. Showrov, “A Novel Deep Learning based Sentiment Analysis of Twitter Data for US Airline Service,” in 2021 International Conference on Information and Communication Technology for Sustainable Development, ICICT4SD 2021 - Proceedings, Dhaka, Bangladesh: Institute of Electrical and Electronics Engineers Inc., Feb. 2021, pp. 450–455. doi: 10.1109/ICICT4SD50815.2021.9396879.

[52] A. Go, R. Bhayani, and L. Huang, “Twitter Sentiment Classification using Distant Supervision,” 2009. [Online]. Available: http://tinyurl.com/cvvg9a

[53] S. Reddy and Damodar, “Accuracy of prediction by machine learning algorithms,” Int J Eng Adv Technol, vol. 8, no. 6 Special Issue 3, pp. 1929–1933, Sep. 2019, doi: 10.35940/ijeat.F1371.0986S319.

[54] K. L. Tan, C. P. Lee, and K. M. Lim, “RoBERTa-GRU: A Hybrid Deep Learning Model for Enhanced Sentiment Analysis,” Applied Sciences (Switzerland), vol. 13, no. 6, pp. 2–16, Mar. 2023, doi: 10.3390/app13063915.

[55] L. Bryan-Smith, J. Godsall, F. George, K. Egode, N. Dethlefs, and D. Parsons, “Real-time Social Media Sentiment Analysis for Rapid Impact Assessment of Floods,” Comput Geosci, vol. 178, pp. 1–13, Sep. 2023, doi: 10.1016/j.cageo.2023.105405.

[56] R. Haque, N. Islam, M. Tasneem, and A. K. Das, “Multi-class sentiment classification on Bengali social media comments using machine learning,” International Journal of Cognitive Computing in Engineering, vol. 4, pp. 21–35, Jun. 2023, doi: 10.1016/j.ijcce.2023.01.001.

[57] A. Qazi, N. Hasan, C. M. Owusu-Ansah, G. Hardaker, S. K. Dey, and K. Haruna, “SentiTAM: Sentiments Centered Integrated Framework for Mobile Learning Adaptability in Higher Education,” Heliyon, vol. 9, no. 1, pp. 1–14, Jan. 2023, doi: 10.1016/j.heliyon.2022.e12705.

[58] M. El Barachi, M. AlKhatib, S. Mathew, and F. Oroumchian, “A Novel Sentiment Analysis Framework for Monitoring the Evolving Public Opinion in Real-time: Case Study on Climate Change,” J Clean Prod, vol. 312, pp. 1–12, Aug. 2021, doi: 10.1016/j.jclepro.2021.127820.

[59] Y. Liu et al., “Scanning, attention, and reasoning multimodal content for sentiment analysis,” Knowl Based Syst, vol. 268, pp. 1–11, May 2023, doi: 10.1016/j.knosys.2023.110467.

[60] M. Asif, A. Ishtiaq, H. Ahmad, H. Aljuaid, and J. Shah, “Sentiment analysis of extremism in social media from textual information,” Telematics and Informatics, vol. 48, pp. 1–20, May 2020, doi: 10.1016/j.tele.2020.101345.

[61] K. L. Tan, C. P. Lee, and K. M. Lim, “A Survey of Sentiment Analysis: Approaches, Datasets, and Future Research,” Apr. 01, 2023, MDPI. doi: 10.3390/app13074550.

[62] J. Blitzer, M. Dredze, and F. Pereira, “Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification,” Association for Computational Linguistics, 2007. [Online]. Available: http://ida.

[63] Y. Dang, Y. Zhang, and H. Chen, “A Lexicon-Enhanced Method for Sentiment Classification: An Experiment on Online Product Reviews,” 2010. [Online]. Available: www.computer.org/intelligent

[64] A. Fahrni, “Old Wine or Warm Beer: Target-Specific Sentiment Analysis of Adjectives,” 2008, doi: 10.5167/uzh-8810.

[65] V. A. Kharde and S. S. Sonawane, “Sentiment Analysis of Twitter Data: A Survey of Techniques,” 2016. [Online]. Available: http://ai.stanford.

[66] Y. Guo, S. Das, S. Lakamana, and A. Sarker, “An aspect-level sentiment analysis dataset for therapies on Twitter,” Data Brief, vol. 50, pp. 1–5, Oct. 2023, doi: 10.1016/j.dib.2023.109618.

[67] H. Al-Samarraie, S. Muthana Sarsam, and A. I. Alzahrani, “Haptic Technology in Society: A Sentiment Analysis of Public Engagement,” Comput Human Behav, vol. 147, pp. 1–10, Oct. 2023, doi: 10.1016/j.chb.2023.107862.

[68] A. R. Chrismanto, A. K. Sari, and Y. Suyanto, “Enhancing Spam Comment Detection on Social Media With Emoji Feature and Post-Comment Pairs Approach Using Ensemble Methods of Machine Learning,” IEEE Access, vol. 11, pp. 80246–80265, 2023, doi: 10.1109/ACCESS.2023.3299853.

[69] A. M. Tri Sakti, E. Mohamad, and A. A. Azlan, “Mining of opinions on COVID-19 large-scale social restrictions in indonesia: Public sentiment and emotion analysis on online media,” J Med Internet Res, vol. 23, no. 8, Aug. 2021, doi: 10.2196/28249.

[70] G. A. Buntoro, R. Arifin, G. N. Syaifuddiin, A. Selamat, O. Krejcar, and H. Fujita, “Implementation of a Machine Learning Algorithm for Sentiment Analysis of Indonesia‘s 2019 Presidential Election,” IIUM Engineering Journal, vol. 22, no. 1, pp. 78–92, 2021, doi: 10.31436/IIUMEJ.V22I1.1532.

[71] Y. Li, Q. Pan, T. Yang, S. Wang, J. Tang, and E. Cambria, “Learning Word Representations for Sentiment Analysis,” Cognit Comput, vol. 9, no. 6, pp. 843–851, Dec. 2017, doi: 10.1007/s12559-017-9492-2.

[72] M. Elsheh, H. Benghuzzi, and M. M. Elsheh, “An Investigation of Keywords Extraction from Textual Documents using Word2Vec and Decision Tree,” 2020. [Online]. Available: https://sites.google.com/site/ijcsis/

[73] S. Beliga and A. Meštrović, “An Overview of Graph-Based Keyword Extraction Methods and Approaches,” 2015.

[74] E. Cambria, “Affective Computing and Sentiment Analysis,” IEEE Intell Syst, vol. 31, no. 2, pp. 102–107, Mar. 2016, doi: 10.1109/MIS.2016.31.

[75] W. Medhat, A. Hassan, and H. Korashy, “Sentiment analysis algorithms and applications: A survey,” Ain Shams Engineering Journal, vol. 5, no. 4, pp. 1093–1113, Dec. 2014, doi: 10.1016/j.asej.2014.04.011.

[76] B. Pang and L. Lee, “A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts,” 2004. [Online]. Available: www.cs.cornell.edu/people/pabo/movie-

[77] Y. Hu and W. Li, “Document sentiment classification by exploring description model of topical terms,” Comput Speech Lang, vol. 25, no. 2, pp. 386–403, Apr. 2011, doi: 10.1016/j.csl.2010.07.004.

[78] A. R. Chrismanto, A. K. Sari, and Y. Suyanto, “Enhancing Spam Comment Detection on Social Media With Emoji Feature and Post-Comment Pairs Approach Using Ensemble Methods of Machine Learning,” IEEE Access, vol. 11, pp. 80246–80265, 2023, doi: 10.1109/ACCESS.2023.3299853.

[79] N. Abdelhady, I. E. Elsemman, M. F. Farghally, and T. H. A. Soliman, “Developing Analytical Tools for Arabic Sentiment Analysis of COVID-19 Data,” Algorithms, vol. 16, no. 7, Jul. 2023, doi: 10.3390/a16070318.

[80] D. K. Jain, A. Kumar, and S. R. Sangwan, “TANA: The amalgam neural architecture for sarcasm detection in indian indigenous language combining LSTM and SVM with word-emoji embeddings,” Pattern Recognit Lett, vol. 160, pp. 11–18, Aug. 2022, doi: 10.1016/j.patrec.2022.05.026.

[81] M. E. Basiri, S. Nemati, M. Abdar, E. Cambria, and U. R. Acharya, “ABCDM: An Attention-based Bidirectional CNN-RNN Deep Model for sentiment analysis,” Future Generation Computer Systems, vol. 115, pp. 279–294, Feb. 2021, doi: 10.1016/j.future.2020.08.005.

[82] L. Li and X. T. Wang, “Nonverbal communication with emojis in social media: dissociating hedonic intensity from frequency,” Lang Resour Eval, vol. 57, no. 1, pp. 323–342, Mar. 2023, doi: 10.1007/s10579-022-09611-6.

[83] W. Mays, The philosophy of Whitehead. Routledge, 2014.

[84] T. Han, C. Liu, W. Yang, and D. Jiang, “A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults,” Knowl Based Syst, vol. 165, pp. 474–487, Feb. 2019, doi: 10.1016/j.knosys.2018.12.019.

[85] R. Hassan and M. R. Islam, “Impact of Sentiment Analysis in Fake Online Review Detection,” in 2021 International Conference on Information and Communication Technology for Sustainable Development, ICICT4SD 2021 - Proceedings, Institute of Electrical and Electronics Engineers Inc., Feb. 2021, pp. 21–24. doi: 10.1109/ICICT4SD50815.2021.9396899.

[86] A. Ebadi, P. Xi, S. Tremblay, B. Spencer, R. Pall, and A. Wong, “Understanding the temporal evolution of COVID-19 research through machine learning and natural language processing,” Scientometrics, vol. 126, no. 1, pp. 725–739, Jan. 2021, doi: 10.1007/s11192-020-03744-7.

[87] E. M. Clark et al., “A Sentiment Analysis of Breast Cancer Treatment Experiences and Healthcare Perceptions Across Twitter,” May 2018, [Online]. Available: http://arxiv.org/abs/1805.09959

[88] S. Kumar, M. Yadava, and P. P. Roy, “Fusion of EEG response and sentiment analysis of products review to predict customer satisfaction,” Information Fusion, vol. 52, pp. 41–52, Dec. 2019, doi: 10.1016/j.inffus.2018.11.001.

[89] A. Osmani and J. B. Mohasefi, “Weighted Joint Sentiment-Topic Model for Sentiment Analysis Compared to ALGA: Adaptive Lexicon Learning Using Genetic Algorithm,” Comput Intell Neurosci, vol. 2022, 2022, doi: 10.1155/2022/7612276.

[90] P. K. Jain, E. A. Yekun, R. Pamula, and G. Srivastava, “Consumer recommendation prediction in online reviews using Cuckoo optimized machine learning models,” Computers and Electrical Engineering, vol. 95, Oct. 2021, doi: 10.1016/j.compeleceng.2021.107397.

[91] F. Z. Xing, E. Cambria, and R. E. Welsch, “Natural language based financial forecasting: a survey,” Artif Intell Rev, vol. 50, no. 1, pp. 49–73, Jun. 2018, doi: 10.1007/s10462-017-9588-9.

[92] L. Rognone, S. Hyde, and S. S. Zhang, “News sentiment in the cryptocurrency market: An empirical comparison with Forex,” International Review of Financial Analysis, vol. 69, May 2020, doi: 10.1016/j.irfa.2020.101462.

[93] S. Hu, A. Kumar, F. Al-Turjman, S. Gupta, S. Seth, and Shubham, “Reviewer Credibility and Sentiment Analysis Based User Profile Modelling for Online Product Recommendation,” IEEE Access, vol. 8, pp. 26172–26189, 2020, doi: 10.1109/ACCESS.2020.2971087.

Downloads

Published

2025-05-09

Issue

Section

Article

Citation Check

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.