Prediction Model for Soybean Land Suitability Using C5.0 Algorithm
DOI:
https://doi.org/10.15575/join.v6i2.711Keywords:
C5.0 algorithm, ID3 decision tree, Land suitability, SoybeanAbstract
References
K. E. Preece, N. Hooshyar, and N. J. Zuidam, “Whole soybean protein extraction processes: A review,†Innov. Food Sci. Emerg. Technol., vol. 43, no. March, pp. 163–172, 2017, doi: 10.1016/j.ifset.2017.07.024.
BPPSDMP, “Rencana strategis 2015 –2019, edisi revisi kedua,†Jakarta (ID), 2017. [Online]. Available: http://sakip.pertanian.go.id/admin/file/RENSTRA BPPSDMP 2015-2019.pdf.
Badan Pengkajian Dan Pengembangan Kebijakan Perdagangan, “Laporan outlook pangan kedelai 2015-2019,†Jakarta (ID), 2014. [Online]. Available: http://bppp.kemendag.go.id/media_content/2017/08/Analisis_Outlook_Pangan_2015-2019.pdf.
Bappenas, Proyeksi penduduk Indonesia 2010-2035. Jakarta (ID): Badan Pusat Statistik, 2013.
Pusdatin, Outlook Kedelai: Komoditas Pertanian Subsektor Tanaman Pangan. Jakarta (ID): Pusat Data dan Sistem Informasi Pertanian Kementerian Pertanian, Kementerian Pertanian RI, 2016.
Pusdatin, Outlook Kedelai: Komoditas Pertanian Subsektor Tanaman Pangan. Jakarta (ID): Pusat Data dan Sistem Informasi Pertanian Kementerian Pertanian, Kementerian Pertanian RI, 2018.
D. Djaenudin, M. H., S. H., and A. Hidayat, Petunjuk teknis evaluasi lahan untuk komoditas pertanian, 2nd ed. Bogor (ID): Badan Penelitian dan Pengembangan Pertanian, 2011.
BBSDLP, Atlas peta kesesuaian lahan dan arahan komoditas pertanian pertanian, Kabupaten Bogor, Provinsi Jawa Barat, skala 1:50.000, 2nd ed. Bogor (ID): Badan Penelitian dan Pengembangan Pertanian, Kementerian Pertanian, 2016.
L. Qu, Y. Shao, and L. Zhang, “Land suitability evaluation method based on GIS technology,†in 2nd International Conference on Agro-Geoinformatics: Information for Sustainable Agriculture, Agro-Geoinformatics, 2013, pp. 7–12, doi: 10.1109/Argo-Geoinformatics.2013.6621869.
P. Munene, L. M. Chabala, and A. M. Mweetwa, “Land Suitability Assessment for Soybean (Glycine max (L.) Merr.) Production in Kabwe District, Central Zambia,†J. Agric. Sci., vol. 9, no. 3, p. 74, 2017, doi: 10.5539/jas.v9n3p74.
L. Handayani, A. Rauf, R. Rahmawaty, and T. Supriana, “Reevaluation of Land Fitness For Soybean Plant in Kabamatan Stabat, Langkat District,†Int. J. Appl. Biol., vol. 4, no. 1, pp. 15–20, 2020, doi: 10.20956/ijab.v4i1.9168.
T. Bujlow, T. Riaz, and J. M. Pedersen, “A method for classification of network traffic based on C5.0 machine learning algorithm,†2012 Int. Conf. Comput. Netw. Commun. ICNC’12, pp. 237–241, 2012, doi: 10.1109/ICCNC.2012.6167418.
A. Nurkholis and I. S. Sitanggang, “A spatial analysis of soybean land suitability using spatial decision tree algorithm,†in Sixth International Symposium on LAPAN-IPB Satellite, Dec. 2019, no. December, p. 113720I, doi: 10.1117/12.2541555.
A. Nurkholis and I. S. Sitanggang, “Optimization for prediction model of palm oil land suitability using spatial decision tree algorithm,†J. Teknol. dan Sist. Komput., vol. 8, no. 3, pp. 192–200, 2020, doi: 10.14710/jtsiskom.2020.13657.
A. K. Nisyak, F. Ramdani, and Suprapto, “Web-GIS development and analysis of land suitability for rice plant using GIS-MCDA method in Batu city,†in International Symposium on Geoinformatics, 2017, pp. 24–33, doi: 10.1109/ISYG.2017.8280667.
A. Nurkholis, Muhaqiqin, and T. Susanto, “Algoritme Spatial Decision Tree untuk Evaluasi Kesesuaian Lahan Padi Sawah Irigasi,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 5, pp. 978–987, 2020, doi: 10.29207/resti.v4i5.2476.
A. Nurkholis, M. Muhaqiqin, and T. Susanto, “Land Suitability Analysis for Upland Rice based on Soil and Weather Characteristics using Spatial ID3,†JUITA J. Inform., vol. 8, no. 2, p. 235, 2020, doi: 10.30595/juita.v8i2.8311.
R. Revathy and R. Lawrance, “Comparative Analysis of C4.5 and C5.0 Algorithms on Crop Pest Data,†Int. J. Innov. Res. Comput. Commun. Eng., vol. 5, no. 1, pp. 50–58, 2017, [Online]. Available: www.ijircce.com.
R. Pandya and J. Pandya, “C5. 0 Algorithm to Improved Decision Tree with Feature Selection and Reduced Error Pruning,†Int. J. Comput. Appl., vol. 117, no. 16, pp. 18–21, 2015, doi: 10.5120/20639-3318.
K. Koperski, J. Han, and N. Stefanovic, “An efficient two-step method for classification of spatial data,†in International Symposium on Spatial Data Handling, 1998, pp. 45–54, doi: http://dx.doi.org/10.1.1.12.2505.
BBSDLP, Atlas peta kesesuaian lahan dan arahan komoditas pertanian pertanian, Kabupaten Grobogan, Provinsi Jawa Tengah, skala 1:50.000. Bogor (ID): Badan Penelitian dan Pengembangan Pertanian, Kementerian Pertanian, 2016.
S. K. Adhikary, N. Muttil, and A. G. Yilmaz, “Cokriging for enhanced spatial interpolation of rainfall in two Australian catchments,†Hydrol. Process., vol. 31, no. 12, pp. 2143–2161, 2017, doi: 10.1002/hyp.11163.
A. N. Falah, N. Hamid, E. Rusyaman, A. S. Abdullah, and B. N. Ruchjana, “Implementation of Ordinary Co-Kriging method for prediction of coal quality variable at unobserved locations,†J. Phys. Conf. Ser., vol. 1722, p. 012076, 2021, doi: 10.1088/1742-6596/1722/1/012076.
M. D. Asfaw, S. M. Kassa, E. M. Lungu, and W. Bewket, “Effects of temperature and rainfall in plant–herbivore interactions at different altitude,†Ecol. Modell., vol. 406, no. August, pp. 50–59, 2019, doi: 10.1016/j.ecolmodel.2019.05.011.
BMKG, “Data Iklim - Data Harian,†Badan Meteorologi, Klimatologi, dan Geofisika, 2019. https://dataonline.bmkg.go.id/data_iklim (accessed Jul. 20, 2020).
N. Patil, R. Lathi, and V. Chitre, “Comparison of C5.0 & CART Classification algorithms using pruning technique,†Int. J. Eng. Res. Technol., vol. 1, no. 4, pp. 1–5, 2012.
S. Pang and J. Gong, “C5.0 Classification Algorithm and Application on Individual Credit Evaluation of Banks,†Syst. Eng. - Theory Pract., vol. 29, no. 12, pp. 94–104, 2009, doi: 10.1016/s1874-8651(10)60092-0.
T. H. Kerbaa, A. Mezache, and H. Oudira, “Model Selection of Sea Clutter Using Cross Validation Method,†Procedia Comput. Sci., vol. 158, pp. 394–400, 2019, doi: 10.1016/j.procs.2019.09.067.
A. Tharwat, “Classification assessment methods,†Appl. Comput. Informatics, 2018, doi: 10.1016/j.aci.2018.08.003.
G. P. Siknun and I. S. Sitanggang, “Web-based Classification Application for Forest Fire Data Using the Shiny Framework and the C5.0 Algorithm,†Procedia Environ. Sci., vol. 33, no. April, pp. 332–339, 2016, doi: 10.1016/j.proenv.2016.03.084.
FAO, A framework for land evaluation, 1st ed. Rome (IT): Food and Agriculture Organization of The United Nations, 1976.
Downloads
Published
Issue
Section
Citation Check
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License