Prediction Model for Soybean Land Suitability Using C5.0 Algorithm

Authors

  • Andi Nurkholis Department of Informatics, Teknokrat Indonesia University, Indonesia
  • Styawati Styawati Department of Information Systems, Teknokrat Indonesia University, Indonesia

DOI:

https://doi.org/10.15575/join.v6i2.711

Keywords:

C5.0 algorithm, ID3 decision tree, Land suitability, Soybean

Abstract

Soybean is one of the protein main sources that can be used for consumption in tempeh, tofu, milk, etc. Based on projection results, soybean production and consumption balance in Indonesia, in 2018-2022, it is estimated that deficit will increase by 6.18% per year. So, it's necessary to guide soybean land suitability, which can be carried out by evaluating existing land suitability to support soybean farming expansion and production. This study conducted an analytical study to evaluate soybean land suitability using C5.0 algorithm based on land and weather characteristics. The C5.0 algorithm is an extension of spatial decision tree, an ID3 decision tree extension. Dataset is divided into two categories: explanatory factors representing seven land characteristics (drainage, land slope, base saturation, cation exchange capacity, soil texture, soil pH, and soil mineral depth) and two weather data (rainfall and temperature), and a target class represent soybean land suitability in two study areas, namely Bogor and Grobogan Regency. The result generated two land suitability models with the best model obtained accuracy for training data 98.58%, while testing data was 97.17%. The best model rules are 69 rules that do not involve three attributes: cation exchange capacity, soil mineral depth, and rainfall.

References

K. E. Preece, N. Hooshyar, and N. J. Zuidam, “Whole soybean protein extraction processes: A review,†Innov. Food Sci. Emerg. Technol., vol. 43, no. March, pp. 163–172, 2017, doi: 10.1016/j.ifset.2017.07.024.

BPPSDMP, “Rencana strategis 2015 –2019, edisi revisi kedua,†Jakarta (ID), 2017. [Online]. Available: http://sakip.pertanian.go.id/admin/file/RENSTRA BPPSDMP 2015-2019.pdf.

Badan Pengkajian Dan Pengembangan Kebijakan Perdagangan, “Laporan outlook pangan kedelai 2015-2019,†Jakarta (ID), 2014. [Online]. Available: http://bppp.kemendag.go.id/media_content/2017/08/Analisis_Outlook_Pangan_2015-2019.pdf.

Bappenas, Proyeksi penduduk Indonesia 2010-2035. Jakarta (ID): Badan Pusat Statistik, 2013.

Pusdatin, Outlook Kedelai: Komoditas Pertanian Subsektor Tanaman Pangan. Jakarta (ID): Pusat Data dan Sistem Informasi Pertanian Kementerian Pertanian, Kementerian Pertanian RI, 2016.

Pusdatin, Outlook Kedelai: Komoditas Pertanian Subsektor Tanaman Pangan. Jakarta (ID): Pusat Data dan Sistem Informasi Pertanian Kementerian Pertanian, Kementerian Pertanian RI, 2018.

D. Djaenudin, M. H., S. H., and A. Hidayat, Petunjuk teknis evaluasi lahan untuk komoditas pertanian, 2nd ed. Bogor (ID): Badan Penelitian dan Pengembangan Pertanian, 2011.

BBSDLP, Atlas peta kesesuaian lahan dan arahan komoditas pertanian pertanian, Kabupaten Bogor, Provinsi Jawa Barat, skala 1:50.000, 2nd ed. Bogor (ID): Badan Penelitian dan Pengembangan Pertanian, Kementerian Pertanian, 2016.

L. Qu, Y. Shao, and L. Zhang, “Land suitability evaluation method based on GIS technology,†in 2nd International Conference on Agro-Geoinformatics: Information for Sustainable Agriculture, Agro-Geoinformatics, 2013, pp. 7–12, doi: 10.1109/Argo-Geoinformatics.2013.6621869.

P. Munene, L. M. Chabala, and A. M. Mweetwa, “Land Suitability Assessment for Soybean (Glycine max (L.) Merr.) Production in Kabwe District, Central Zambia,†J. Agric. Sci., vol. 9, no. 3, p. 74, 2017, doi: 10.5539/jas.v9n3p74.

L. Handayani, A. Rauf, R. Rahmawaty, and T. Supriana, “Reevaluation of Land Fitness For Soybean Plant in Kabamatan Stabat, Langkat District,†Int. J. Appl. Biol., vol. 4, no. 1, pp. 15–20, 2020, doi: 10.20956/ijab.v4i1.9168.

T. Bujlow, T. Riaz, and J. M. Pedersen, “A method for classification of network traffic based on C5.0 machine learning algorithm,†2012 Int. Conf. Comput. Netw. Commun. ICNC’12, pp. 237–241, 2012, doi: 10.1109/ICCNC.2012.6167418.

A. Nurkholis and I. S. Sitanggang, “A spatial analysis of soybean land suitability using spatial decision tree algorithm,†in Sixth International Symposium on LAPAN-IPB Satellite, Dec. 2019, no. December, p. 113720I, doi: 10.1117/12.2541555.

A. Nurkholis and I. S. Sitanggang, “Optimization for prediction model of palm oil land suitability using spatial decision tree algorithm,†J. Teknol. dan Sist. Komput., vol. 8, no. 3, pp. 192–200, 2020, doi: 10.14710/jtsiskom.2020.13657.

A. K. Nisyak, F. Ramdani, and Suprapto, “Web-GIS development and analysis of land suitability for rice plant using GIS-MCDA method in Batu city,†in International Symposium on Geoinformatics, 2017, pp. 24–33, doi: 10.1109/ISYG.2017.8280667.

A. Nurkholis, Muhaqiqin, and T. Susanto, “Algoritme Spatial Decision Tree untuk Evaluasi Kesesuaian Lahan Padi Sawah Irigasi,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 5, pp. 978–987, 2020, doi: 10.29207/resti.v4i5.2476.

A. Nurkholis, M. Muhaqiqin, and T. Susanto, “Land Suitability Analysis for Upland Rice based on Soil and Weather Characteristics using Spatial ID3,†JUITA J. Inform., vol. 8, no. 2, p. 235, 2020, doi: 10.30595/juita.v8i2.8311.

R. Revathy and R. Lawrance, “Comparative Analysis of C4.5 and C5.0 Algorithms on Crop Pest Data,†Int. J. Innov. Res. Comput. Commun. Eng., vol. 5, no. 1, pp. 50–58, 2017, [Online]. Available: www.ijircce.com.

R. Pandya and J. Pandya, “C5. 0 Algorithm to Improved Decision Tree with Feature Selection and Reduced Error Pruning,†Int. J. Comput. Appl., vol. 117, no. 16, pp. 18–21, 2015, doi: 10.5120/20639-3318.

K. Koperski, J. Han, and N. Stefanovic, “An efficient two-step method for classification of spatial data,†in International Symposium on Spatial Data Handling, 1998, pp. 45–54, doi: http://dx.doi.org/10.1.1.12.2505.

BBSDLP, Atlas peta kesesuaian lahan dan arahan komoditas pertanian pertanian, Kabupaten Grobogan, Provinsi Jawa Tengah, skala 1:50.000. Bogor (ID): Badan Penelitian dan Pengembangan Pertanian, Kementerian Pertanian, 2016.

S. K. Adhikary, N. Muttil, and A. G. Yilmaz, “Cokriging for enhanced spatial interpolation of rainfall in two Australian catchments,†Hydrol. Process., vol. 31, no. 12, pp. 2143–2161, 2017, doi: 10.1002/hyp.11163.

A. N. Falah, N. Hamid, E. Rusyaman, A. S. Abdullah, and B. N. Ruchjana, “Implementation of Ordinary Co-Kriging method for prediction of coal quality variable at unobserved locations,†J. Phys. Conf. Ser., vol. 1722, p. 012076, 2021, doi: 10.1088/1742-6596/1722/1/012076.

M. D. Asfaw, S. M. Kassa, E. M. Lungu, and W. Bewket, “Effects of temperature and rainfall in plant–herbivore interactions at different altitude,†Ecol. Modell., vol. 406, no. August, pp. 50–59, 2019, doi: 10.1016/j.ecolmodel.2019.05.011.

BMKG, “Data Iklim - Data Harian,†Badan Meteorologi, Klimatologi, dan Geofisika, 2019. https://dataonline.bmkg.go.id/data_iklim (accessed Jul. 20, 2020).

N. Patil, R. Lathi, and V. Chitre, “Comparison of C5.0 & CART Classification algorithms using pruning technique,†Int. J. Eng. Res. Technol., vol. 1, no. 4, pp. 1–5, 2012.

S. Pang and J. Gong, “C5.0 Classification Algorithm and Application on Individual Credit Evaluation of Banks,†Syst. Eng. - Theory Pract., vol. 29, no. 12, pp. 94–104, 2009, doi: 10.1016/s1874-8651(10)60092-0.

T. H. Kerbaa, A. Mezache, and H. Oudira, “Model Selection of Sea Clutter Using Cross Validation Method,†Procedia Comput. Sci., vol. 158, pp. 394–400, 2019, doi: 10.1016/j.procs.2019.09.067.

A. Tharwat, “Classification assessment methods,†Appl. Comput. Informatics, 2018, doi: 10.1016/j.aci.2018.08.003.

G. P. Siknun and I. S. Sitanggang, “Web-based Classification Application for Forest Fire Data Using the Shiny Framework and the C5.0 Algorithm,†Procedia Environ. Sci., vol. 33, no. April, pp. 332–339, 2016, doi: 10.1016/j.proenv.2016.03.084.

FAO, A framework for land evaluation, 1st ed. Rome (IT): Food and Agriculture Organization of The United Nations, 1976.

Downloads

Published

2021-12-26

Issue

Section

Article

Citation Check

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.