Implementation of Apriori Algorithm for Music Genre Recommendation
DOI:
https://doi.org/10.15575/join.v7i1.819Keywords:
music genre, association rule, apriori algorithm, recommendation system, data miningAbstract
References
K. E. Barkwell et al., “Big data visualisation and visual analytics for music data mining,†Inf. Vis. - Biomed. Vis. Vis. Built Rural Environ. Geom. Model. Imaging, IV 2018, pp. 235–240, 2018, doi: 10.1109/iV.2018.00048.
F. Liu, S. Zhang, J. Ge, F. Lu, and J. Zou, “Agricultural Major Courses Recommendation Using Apriori Algorithm Applied in China Open University System,†Proc. - 2016 9th Int. Symp. Comput. Intell. Des. Isc. 2016, vol. 1, pp. 442–446, 2016, doi: 10.1109/ISCID.2016.1109.
P. D. Waggoner, “Unsupervised Machine Learning for Clustering in Political and Social Research,†Unsupervised Mach. Learn. Clust. Polit. Soc. Res., 2020, doi: 10.1017/9781108883955.
M. Sandeep Kumar and J. Prabhu, “A hybrid model collaborative movie recommendation system using K-means clustering with ant colony optimisation,†Int. J. Internet Technol. Secur. Trans., vol. 10, no. 3, pp. 337–354, 2020, doi: 10.1504/IJITST.2020.107079.
L. Yao, Z. Xu, X. Zhou, and B. Lev, “Synergies Between Association Rulesand Collaborative Filteringin Recommender System: An Applicationto Auto Industry,†Data Sci. Digit. Bus., pp. 23–40, 2019, doi: 10.1007/978-3-319-95651-0_2.
C. Wang and X. Zheng, “Application of improved time series Apriori algorithm by frequent itemsets in association rule data mining based on temporal constraint,†Evol. Intell., vol. 13, no. 1, pp. 39–49, 2020, doi: 10.1007/s12065-019-00234-5.
A. Gonzalez and F. Forsberg, “Unsupervised Machine Learning : An Investigation of Clustering Algorithms on a Small Dataset,†pp. 1–39, 2017.
S. V Hovale and P. G, “Survey Paper on Recommendation System using Data Mining Techniques,†Int. J. Eng. Comput. Sci., vol. 0869, no. 4, pp. 18–19, 2016, doi: 10.18535/ijecs/v5i5.60.
M. K. Najafabadi, M. N. Mahrin, S. Chuprat, and H. Sarkan, “Improving the accuracy of collaborative filtering recommendations using clustering and association rules mining,†Comput. Human Behav., pp. 113–128, 2017, doi: http://dx.doi.org/10.1016/j.chb.2016.11.010.
S. Alzu’Bi, B. Hawashin, M. Eibes, and M. Al-Ayyoub, “A Novel Recommender System Based on Apriori Algorithm for Requirements Engineering,†2018 5th Int. Conf. Soc. Networks Anal. Manag. Secur. SNAMS 2018, pp. 323–327, 2018, doi: 10.1109/SNAMS.2018.8554909.
M. Muhairat, S. Alzu’bi, B. Hawashin, M. Elbes, and M. Al-Ayyoub, “An intelligent recommender system based on association rule analysis for requirement engineering,†J. Univers. Comput. Sci., vol. 26, no. 1, pp. 33–49, 2020.
F. Ali, T. Ahmad, A. M. Martinez-Enriquez, and A. Muhammad, “Data mining based recommendation system using social websites,†Proc. - 2015 IEEE/WIC/ACM Int. Jt. Conf. Web Intell. Intell. Agent Technol. WI-IAT 2015, vol. 1, pp. 365–368, 2016, doi: 10.1109/WI-IAT.2015.78.
J. Jooa, S. Bangb, and G. Parka, “Implementation of a Recommendation System Using Association Rules and Collaborative Filtering,†Procedia Comput. Sci., vol. 91, no. Itqm 2016, pp. 944–952, 2016, doi: 10.1016/j.procs.2016.07.115.
M. Brilliant, D. Handoko, and Sriyanto, “Implementation of Data Mining Using Association Rules for Transactional Data Analysis,†3rd Int. Conf. Inf. Technol. Bus., pp. 177–180, 2017.
I. B. E. Kouni, W. Karoui, and L. B. Romdhane, “Prucars: Improved association rule-based social recommender systems using overlapping community detection,†Procedia Comput. Sci., vol. 176, pp. 956–965, 2020, doi: 10.1016/j.procs.2020.09.091.
M. Fauzy, K. R. Saleh W, and I. Asror, “Penerapan Metode Association Rule Menggunakan Algoritma Apriori pada Simulasi Prediksi Hujan Wilayah Kota Bandung,†J. Ilm. Teknol. Inf. Terap., vol. II, no. 2, pp. 221–227, 2016.
Downloads
Published
Issue
Section
Citation Check
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License