Internet of Things (IoT) for Soil Moisture Detection Using Time Series Model


  • Iman Setiawan Statistic Study Program, Tadulako University, Palu, Indonesia
  • Junaidi Junaidi Statistic Study Program, Tadulako University, Palu, Indonesia
  • Fadjryani Fadjryani Statistic Study Program, Tadulako University, Palu, Indonesia
  • Fika Reski Amaliah Statistic Study Program, Tadulako University, Palu, Indonesia



IoT, Soil Moisture Sensor, Time Series Model


Technology in agriculture has been widely and massively applied. One of them is automation technology and the use of big data through the Internet of Things (IoT). The use of IoT allows a process to run automatically without human intervention. Extreme weather changes and narrow land use are one of the main problems in agriculture. The development of IoT devices has been widely developed regarding this subject. One of them is a soil moisture detection system. This study aims to build an IoT soil moisture detection system. The system will use a sensor as input which is then processed in a microcontroller device and the prediction results are sent to the IoT cloud platform. Prediction results are obtained using a time series model and then its performance is evaluated using RMSE. This model was chosen because the structure of the observed soil moisture data is based on time. The results of this study indicate that the soil moisture IoT system can work well. This is supported by the results of the prediction evaluation value of the RMSE = 1.175682x10-5 model which is very small.


W. S. Kim, W. S. Lee, and Y. J. Kim, “A Review of the Applications of the Internet of Things (IoT) for Agricultural Automation,†J. Biosyst. Eng., vol. 45, no. 4, pp. 385–400, Dec. 2020, doi: 10.1007/S42853-020-00078-3.

E. Borgia, “The internet of things vision: Key features, applications and open issues,†Comput. Commun., vol. 54, pp. 1–31, Dec. 2014, doi: 10.1016/J.COMCOM.2014.09.008.

M. Ashifuddinmondal and Z. Rehena, “IoT Based Intelligent Agriculture Field Monitoring System,†Proc. 8th Int. Conf. Conflu. 2018 Cloud Comput. Data Sci. Eng. Conflu. 2018, pp. 625–629, Aug. 2018, doi: 10.1109/CONFLUENCE.2018.8442535.

I. Setiawan, J. Junaidi, F. Fadjryani, and F. R. Amaliah, “Automatic Plant Watering System for Local Red Onion Palu using Arduino,†J. Online Inform., vol. 7, no. 1, pp. 28–37, Jun. 2022, doi: 10.15575/JOIN.V7I1.813.

J. D. Cryer and K.-S. Chan, “[CN]Time Series Analysis: With Applications to R,†p. 487, 2008, doi: 10.1007/978-0-387-75959-3.

I. Setiawan, I. M. Sumertajaya, and F. M. Afendi, “Predicting and forecasting of time series models using cluster analysis,†J. Phys. Conf. Ser., vol. 1763, no. 2, p. 12035, 2021, doi: 10.1088/1742-6596/1763/1/012035.

V. Vinoth Kumar, R. Ramasamy, S. Janarthanan, and M. Vasimbabu, “Implementation of IOT In Smart Irrigation System Using Arduino Processor,†Int. J. Civ. Eng. Technol., vol. 8, no. 10, pp. 1304–1314, 2017, Accessed: Nov. 24, 2022. [Online]. Available:

N. K. Nawandar and V. R. Satpute, “IoT based low cost and intelligent module for smart irrigation system,†Comput. Electron. Agric., vol. 162, pp. 979–990, Jul. 2019, doi: 10.1016/J.COMPAG.2019.05.027.

S. B. Saraf and D. H. Gawali, “IoT based smart irrigation monitoring and controlling system,†RTEICT 2017 - 2nd IEEE Int. Conf. Recent Trends Electron. Inf. Commun. Technol. Proc., vol. 2018-January, pp. 815–819, Jul. 2017, doi: 10.1109/RTEICT.2017.8256711.

Devasis Pradhan and Hla Myo Tun, “Security Challenges: M2M Communication in IoT,†J. Electr. Eng. Autom., vol. 4, no. 3, pp. 187–199, Oct. 2022, doi: 10.36548/JEEA.2022.3.006.

A. OO, “Design, simulation and implementation of an Arduino microcontroller based automatic water level controller with I2C LCD display,†Int. J. Adv. Appl. Sci., vol. 9, no. 2, p. 77, Jun. 2020, doi: 10.11591/IJAAS.V9.I2.PP77-84.

Y. M. A. Latupeirissa, N. Nainggolan, and T. Manurung, “Model Generalized Space Time Autoregressive (GSTAR) Orde 1 dan Penerapannya pada Prediksi Harga Beras di Kota Bitung, Kabupaten Minahasa dan Kabupaten Minahasa Selatan,†d’CARTESIAN, vol. 3, no. 1, p. 43, Mar. 2014, doi: 10.35799/DC.3.1.2014.3824.

M. H. Kutner, C. Nachtsheim, J. Neter, and W. Li, Text Book Title Applied Linear Statistical Models. McGraw-Hill Irwin, 2004.

T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature,†Geosci. Model Dev., vol. 7, no. 3, pp. 1247–1250, Jun. 2014, doi: 10.5194/GMD-7-1247-2014.

H. Arsham and M. Lovric, “Bartlett’s Test,†Int. Encycl. Stat. Sci., pp. 87–88, 2011, doi: 10.1007/978-3-642-04898-2_132.

E. Herranz, “Unit root tests,†Wiley Interdiscip. Rev.

Comput. Stat., vol. 9, no. 3, May 2017, doi: 10.1002/WICS.1396.

A. Trapletti and K. Hornik, “Package ‘tseries’ Title Time Series Analysis and Computational Finance,†2022, Accessed: Oct. 18, 2022. [Online]. Available:

R Core Team, “R: A Language and Environment for Statistical Computing.†R Foundation for Statistical Computing, Vienna, Austria, 2021, Accessed: Oct. 18, 2022. [Online]. Available:

B. Hamner, M. Frasco, and E. Ledell, “Title Evaluation Metrics for Machine Learning,†2022.







Citation Check

Most read articles by the same author(s)