Perbandingan Metode Cosine Similarity Dengan Metode Jaccard Similarity Pada Aplikasi Pencarian Terjemah Al-Qur'an dalam Bahasa Indonesia
DOI:
https://doi.org/10.15575/join.v1i1.12Keywords:
Relevan, Cosine, Jaccard, Nearest Neighbor (K-NN), Al-Qur'anAbstract
Todays there are more applications supporting Al-Qur'an to facilitate such a study, which could be called digital Al-Qur'an. But when using applications digital Al-Qur'an, which has many applications users experience difficulties when searching for a word that users want.This occurs when users misspell a word you want to search and applications that are not yet able to identify or justify the wrong word. In this thesis made the information retrieval system that is used to find information that is relevant to the needs of its users automatically based on conformity to the query of a collection of information.Algoritma used to determine the similarity (degree of similarity) or relevant similarity algoritma, cosine, Jaccard, and nearest neighbor (k-nn) for comparing algoritma that are more relevant to the translation application alquran. The test result proves that the cosine similarity algoritma has the highest value with the percentage of 41% compared with Jaccard 19% algoritma and nearest neighbor (k-nn) 40% on translation of Al-Qur'an as much 6326 document and 33 query different experiments.
References
E. Prasetyo, Data Mining –Konsep Dan Aplikasi Manggunakan Maltab. Yogyakarta : ANDI , 2012.
S. Nurhayati, “Text Mining”, Implementasi Text Mining Untuk Klasifikasi Kesenian Tradisional Dengan Metode Nbc (Naïve Bayes Classifier), Fakultas Teknik dan Ilmu Komputer Universitas Komputer Indonrsia. Bandung, 2010, pp. 1-5.
M. Fitri, Kombinasi Tf-Idf, Perancangan Sistem Temu Balik Informasi Dengan Metode Pembobotan Kombinasi Tf-Idf Untuk Pencarian Dokumen BerbahasaIndonesia, Tanjungpura, 2013, pp. 1-6
G. A. Pradnyana dan N. A. Sanjaya, “Cosine Similarity”, Perancangan Dan Implementasi Automated Document Integration Dengan Menggunakan Algoritma Complete Linkage Agglomerative Hierarchical Clustering, vol. 5, (2),pp. 1-10, September 2012.
S. S. S. Purwandari, Rancang Bangun Search Engine Tafsir Al-Quran Yang Mampu Memproses Teks Bahasa Indonesia Menggunakan Metode Jaccard Similarity, Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang, 2012, pp. 9-27.
N. Krisandi, Helmi, dan B. Prihandono, “Klasifikasi Data”, Algoritma K-Nearest Neighbor Dalam Klasifikasi Data Hasil Produksi Kelapa Sawit Pada PT.Minamas Kecamatan Parindu, vol. 2, (1), pp. 33-38, 2013.
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2016 Jurnal Online Informatika

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License