Perbandingan Metode Cosine Similarity Dengan Metode Jaccard Similarity Pada Aplikasi Pencarian Terjemah Al-Qur'an dalam Bahasa Indonesia

Authors

  • Ogie Nurdiana Jurusan Teknik Informatika, Fakultas Sains dan Teknologi Universitas Islam Negeri Sunan Gunung Djati Bandung, Indonesia
  • Jumadi Jumadi Jurusan Teknik Informatika, Fakultas Sains dan Teknologi Universitas Islam Negeri Sunan Gunung Djati Bandung, Indonesia
  • Dian Nursantika Jurusan Teknik Informatika, Fakultas Sains dan Teknologi Universitas Islam Negeri Sunan Gunung Djati Bandung, Indonesia

DOI:

https://doi.org/10.15575/join.v1i1.12

Keywords:

Relevan, Cosine, Jaccard, Nearest Neighbor (K-NN), Al-Qur'an

Abstract

Todays there are more applications supporting Al-Qur'an to facilitate such a study, which could be called digital Al-Qur'an. But when using applications digital Al-Qur'an, which has many applications users experience difficulties when searching for a word that users want.This occurs when users misspell a word you want to search and applications that are not yet able to identify or justify the wrong word. In this thesis made the information retrieval system that is used to find information that is relevant to the needs of its users automatically based on conformity to the query of a collection of information.Algoritma used to determine the similarity (degree of similarity) or relevant similarity algoritma, cosine, Jaccard, and nearest neighbor (k-nn) for comparing algoritma that are more relevant to the translation application alquran. The test result proves that the cosine similarity algoritma has the highest value with the percentage of 41% compared with Jaccard 19% algoritma and nearest neighbor (k-nn) 40% on translation of Al-Qur'an as much 6326 document and 33 query different experiments.

References

E. Prasetyo, Data Mining –Konsep Dan Aplikasi Manggunakan Maltab. Yogyakarta : ANDI , 2012.

S. Nurhayati, “Text Mining”, Implementasi Text Mining Untuk Klasifikasi Kesenian Tradisional Dengan Metode Nbc (Naïve Bayes Classifier), Fakultas Teknik dan Ilmu Komputer Universitas Komputer Indonrsia. Bandung, 2010, pp. 1-5.

M. Fitri, Kombinasi Tf-Idf, Perancangan Sistem Temu Balik Informasi Dengan Metode Pembobotan Kombinasi Tf-Idf Untuk Pencarian Dokumen BerbahasaIndonesia, Tanjungpura, 2013, pp. 1-6

G. A. Pradnyana dan N. A. Sanjaya, “Cosine Similarity”, Perancangan Dan Implementasi Automated Document Integration Dengan Menggunakan Algoritma Complete Linkage Agglomerative Hierarchical Clustering, vol. 5, (2),pp. 1-10, September 2012.

S. S. S. Purwandari, Rancang Bangun Search Engine Tafsir Al-Quran Yang Mampu Memproses Teks Bahasa Indonesia Menggunakan Metode Jaccard Similarity, Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang, 2012, pp. 9-27.

N. Krisandi, Helmi, dan B. Prihandono, “Klasifikasi Data”, Algoritma K-Nearest Neighbor Dalam Klasifikasi Data Hasil Produksi Kelapa Sawit Pada PT.Minamas Kecamatan Parindu, vol. 2, (1), pp. 33-38, 2013.

Published

2016-06-01

Issue

Section

Article

Citation Check

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.