Analysis of Backpropagation Algorithm in Predicting the Most Number of Internet Users in the World

Authors

DOI:

https://doi.org/10.15575/join.v3i2.205

Keywords:

Analysis, Backpropagation, Prediction, Internet, World

Abstract

The Internet today has become a primary need for its users. According to market research company e-Marketer, there are 25 countries with the largest internet users in the world. Indonesia is in the sixth position with a total of 112.6 million internet users. With the increasing number of internet users are expected to help improve the economy and also education in a country. To be able to increase the number of internet users, especially in Indonesia, it is necessary to predict for the coming years so that the government can provide adequate facilities and pre-facilities in order to balance the growth of internet users and as a precautionary step when there is a decrease in the number of internet users. The data used in this study focus on data on the number of internet users in 25 countries in 2013-2017. The algorithm used is Artificial Neural Network Backpropagation. Data analysis was processed by Artificial Neural Network using Matlab R2011b (7.13). This study uses 5 architectural models. The best network architecture generated is 3-50-1 with an accuracy of 92% and the Mean Squared Error (MSE) is 0.00151674.

References

A. Novita, “Prediksi Pergerakan Harga Saham Pada Bank Terbesar Di Indonesia Dengan Metode Backpropagation Neural Network.”

I. Saluza, “Aplikasi Metode Jaringan Syaraf Tiruan Backpropagation dalam Meramal Tingkat Inflasi di Indonesia,” Jurnal Gradien, vol. 11, no. 1, pp. 1075–1078, 2015.

J. Geofana, B. Mallo, and D. Ismaimuza, “Analisis Penyelesaian Soal Tingkat Tinggi pada Materi Luas Permukaan dan Volume Prisma Oleh Siswa Kelas IX Smp Negeri 4 Palu,” Jurnal Elektronik Pendidikan Matematika Tadulako, vol. 4, no. 4, pp. 473–480, 2017.

R. R. M. Salim and A. S. Jauhari, “Perancangan Pengenalan Karakter Alfabet menggunakan Metode Hybrid Jaringan Syaraf Tiruan,” Jurnal SIFO Mikroskil, vol. 17, no. 1, pp. 109–118, 2016.

S. P. Siregar and A. Wanto, “Analysis of Artificial Neural Network Accuracy Using Backpropagation Algorithm In Predicting Process ( Forecasting ),” International Journal Of Information System & Technology, vol. 1, no. 1, pp. 34–42, 2017.

F. R. D. B. Simangunsong and S. D. Nasution, “Aplikasi Jaringan Saraf Tiruan Untuk Memprediksi Jumlah Pasien Rawat Inap dengan Metode Back Propagation,” Jurnal Riset Komputer (JURIKOM), vol. 2, no. 6, pp. 43–47, 2015.

P. Sutanto, A. Setiawan, and D. H. Setiabudi, “Perancangan Sistem Forecasting di Perusahaan Kayu UD . 3G dengan Metode ARIMA,” Jurnal Infra, vol. 5, no. 1, pp. 325–330, 2017.

A. Wanto, M. Zarlis, Sawaluddin, and D. Hartama, “Analysis of Artificial Neural Network Backpropagation Using Conjugate Gradient Fletcher Reeves in the Predicting Process,” Journal of Physics: Conference Series, vol. 930, no. 1, pp. 1–7, 2017.

A. T. Yudha, “Game Online dan Berpikir Kreatif,” Jurnal FLOW, vol. 2, no. 12, pp. 1–10, 2016.

I. F. Amir, H. Cangara, and M. Farid, “Implementasi Program M-PLIK Kemkominfo Terhadap Pengenalan Dan Pemanfaatan Internet Bagi Masyarakat Kabupaten Maros Dan Jeneponto,” Jurnal Komunikasi KAREBA, vol. 3, no. 3, pp. 170–178, 2014.

C. Nisak and N. Lubis, “Pengaruh Harga, Keragaman Model Produk, Kualitas Informasi dan Kepercayaan Terhadap Keputusan Pembelian Online pada Toko Tas Online Sabilla Store,” Jurnal Ilmu Administrasi Bisnis, vol. 5, no. 3, pp. 1–12, 2016.

A. Wanto, “Optimasi Prediksi Dengan Algoritma Backpropagation Dan Conjugate Gradient Beale-Powell Restarts,” Jurnal Teknologi dan Sistem Informasi, vol. 3, no. 3, pp. 370–380, 2017.

A. Wanto, A. P. Windarto, D. Hartama, and I. Parlina, “Use of Binary Sigmoid Function And Linear Identity In Artificial Neural Networks For Forecasting Population Density,” International Journal Of Information System & Technology, vol. 1, no. 1, pp. 43–54, 2017.

Downloads

Published

2019-02-01

Issue

Section

Article

Citation Check