Prototype Program Hand Gesture Recognize Using the Convex Hull Method and Convexity Defect on Android

Authors

DOI:

https://doi.org/10.15575/join.v5i2.594

Keywords:

Android, Computer Vision, Convex Hull, Convexity Defect, Hand gesture, Human-computer interaction

Abstract

One of the research topics of Human-Computer Interaction is the development of input devices and how users interact with computers. So far, the application of hand gestures is more often applied to desktop computers. Meanwhile, current technological developments have given rise to various forms of computers, one of which is a computer in the form of a smartphone whose users are increasing every year. Therefore, hand gestures need to be applied to smartphones to facilitate interaction between the user and the device. This study implements hand gestures on smartphones using the Android operating system. The algorithm used is convex hull and convexity defect for recognition of the network on the hand which is used as system input. Meanwhile, to ensure this technology runs well, testing was carried out with 3 scenarios involving variable lighting, background color, and indoor or outdoor conditions. The results of this study indicate that Hand gesture recognition using convex hull and convexity defect algorithms has been successfully implemented on smartphones with the Android operating system. Indoor or outdoor testing environment greatly affects the accuracy of hand gesture recognition. For outdoor use, a green background color with a light intensity of 1725 lux produces 76.7% accuracy, while for indoors, a red background color with a light intensity of 300 lux provides the greatest accuracy of 83.3%.

References

Sutarno, R. Passarella, and B. Arga, “Sistem Pengenalan Gesture Tangan Untuk Kendali Gerak Mobile Robot,†Konf. Nas. Teknol. Inf. Apl., vol. 4, pp. 151–156, 2016.

H. O. Wibawa and A. Harjoko, “Purwarupa Pengoperasian TV Dengan Mendeteksi Isyarat Jari Berbasis Pengolahan Citra Digital,†IJEIS (Indonesian J. Electron. Instrum. Syst., vol. 5, no. 1, p. 31, 2015, doi: 10.22146/ijeis.7151.

A. Berndt, S. Waloschek, and A. Hadjakos, “Hand gestures in music production,†ICMC 2016 - 42nd Int. Comput. Music Conf. Proc., pp. 448–453, 2016.

N. Yuliana, K. Ratri, and R. Wardani, “Metode Convex Hull dan Convexity Defects untuk Pengenalan Isyarat Tangan,†J. Telemat., vol. 11, no. 2, pp. 81–88, 2016.

H. Yunita and E. Setyati, “Hand Gesture Recognition Sebagai Pengganti Mouse Komputer Menggunakan Kamera,†J. ELTIKOM, vol. 3, no. 2, pp. 64–76, 2019, doi: 10.31961/eltikom.v3i2.114.

A. G. Saputra, E. Utami, and H. Al Fatta, “Analisis Penerapan Metode Convex Hull Dan Convexity Defects Untuk Pengenalan Isyarat Tangan,†J. SAINTEKOM, vol. 8, no. 2, p. 105, 2018, doi: 10.33020/saintekom.v8i2.59.

Y. Lukito and A. Harjoko, “Pengenalan Hand Gesture Dinamis Menggunakan JST Metode Pembelajaran Backpropagation,†Pros. Semin. Nas. Ilmu Komput. 2013, pp. 227–230, 2013.

S. Hidayatullah, G. E. Setyawan, and S. R. Akbar, “Perancangan Perangkat Pengendali Navigasi AR Drone Quadcopter Berbasis Hand Gesture dengan Metode Complementary Filter,†J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 9, pp. 3321–3327, 2018.

R. Ridwang, “Pengenalan Bahasa Isyarat Indonesia (SIBI) Menggunakan Leap Motion Controller dan Algoritma Data Mining Naïve Bayes,†J. Insypro (Information Syst. Process., vol. 2, no. 2, 2017, doi: 10.24252/insypro.v2i2.4070.

S. Chaman, D. D’souza, B. D’mello, K. Bhavsar, and J. D’souza, “Real-Time Hand Gesture Communication System in Hindi for Speech and Hearing Impaired,†in 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Jun. 2018, pp. 1954–1958, doi: 10.1109/ICCONS.2018.8663015.

M. M. Islam, S. Siddiqua, and J. Afnan, “Real time Hand Gesture Recognition using different algorithms based on American Sign Language,†in 2017 IEEE International Conference on Imaging, Vision Pattern Recognition (icIVPR), Feb. 2017, pp. 1–6, doi: 10.1109/ICIVPR.2017.7890854.

A. Nikam and A. Ambekar, “Sign language recognition using image based hand gesture recognition techniques,†in Online International Conference on Green Engineering and Technologies (IC-GET), 2016, pp. 1–5, doi: 10.1109/GET.2016.7916786.

M. Oudah, A. Al-Naji, and J. Chahl, “Hand Gesture Recognition Based on Computer Vision: A Review of Techniques,†J. Imaging, vol. 6, no. 8, 2020, doi: 10.3390/JIMAGING6080073.

Downloads

Published

2020-12-03

Issue

Section

Article

Citation Check