Performance of Machine Learning Algorithms on Automatic Summarization of Indonesian Language Texts
DOI:
https://doi.org/10.15575/join.v10i1.1506Keywords:
Abstractive algorithms, Bahasa Indonesia, Hybrid model, T5-model, Text summarizationAbstract
References
[1] M. F. Mridha, A. A. Lima, K. Nur, S. C. Das, M. Hasan, and M. M. Kabir, “A Survey of Automatic Text Summarization: Progress, Process and Challenges,” IEEE Access, vol. 9, pp. 156043–156070, 2021, doi: 10.1109/ACCESS.2021.3129786.
[2] D. Yadav, R. Katna, A. K. Yadav, and J. Morato, “Feature Based Automatic Text Summarization Methods: A Comprehensive State-of-the-Art Survey,” IEEE Access, vol. 10, pp. 133981–134003, 2022, doi: 10.1109/ACCESS.2022.3231016.
[3] K. M. Chaitrashree, T. N. Sneha, S. R. Tanushree, G. R. Usha, and T. C. Pramod, “Unstructured Medical Text Classification using Machine Learning and Deep Learning Approaches,” in 2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), 2021, pp. 429–433. doi: 10.1109/RTEICT52294.2021.9573667.
[4] Á. Hernández-Castañeda, R. A. García-Hernández, Y. Ledeneva, and C. E. Millán-Hernández, “Extractive Automatic Text Summarization Based on Lexical-Semantic Keywords,” IEEE Access, vol. 8, pp. 49896–49907, 2020, doi: 10.1109/ACCESS.2020.2980226.
[5] B. Khan, Z. A. Shah, M. Usman, I. Khan, and B. Niazi, “Exploring the Landscape of Automatic Text Summarization: A Comprehensive Survey,” IEEE Access, vol. 11, pp. 109819–109840, 2023, doi: 10.1109/ACCESS.2023.3322188.
[6] N. Giarelis, C. Mastrokostas, and N. Karacapilidis, “Abstractive vs . Extractive Summarization : An Experimental Review,” 2023.
[7] Á. Hernández-Castañeda, R. A. García-Hernández, Y. Ledeneva, and C. E. Millán-Hernández, “Extractive Automatic Text Summarization Based on Lexical-Semantic Keywords,” IEEE Access, vol. 8, pp. 49896–49907, 2020, doi: 10.1109/ACCESS.2020.2980226.
[8] B. M. Gurusamy, P. K. Rengarajan, and P. Srinivasan, “A hybrid approach for text summarization using semantic latent Dirichlet allocation and sentence concept mapping with transformer,” vol. 13, no. 6, pp. 6663–6672, 2023, doi: 10.11591/ijece.v13i6.pp6663-6672.
[9] N. Khotimah and A. S. Girsang, “Indonesian News Articles Summarization Using Genetic Algorithm,” Engineering Letters, vol. 30, no. 1, pp. 152 – 160, 2022.
[10] Y. M. Sari and N. S. Fatonah, “Peringkasan Teks Otomatis pada Modul Pembelajaran Berbahasa Indonesia Menggunakan,” vol. 7, no. 2, pp. 153–159, 2021.
[11] A. Bahari and K. E. Dewi, “peringkasan teks otomatis abtraktif menggunakan transformer pada teks bahasa indonesia,” KOMPUTA : Jurnal Ilmiah Komputer dan Informatika, vol. 13, no. 1, 2024.
[12] A. nur Khasanah and M. Hayati, “Abtsractive-Based Automatic Text Summarization On Indonesian News Using GPT2,” vol. X, no. 1, pp. 9–18, 2023.
[13] A. S. Girsang and F. J. Amadeus, “Extractive Text Summarization for Indonesian News Article Using Ant System Algorithm,” vol. 14, no. 2, pp. 295–301, 2023, doi: 10.12720/jait.14.2.295-301.
[14] K. E. Dewi and N. I. Widiastuti, “Automatic Summarization of Indonesian Texts Using a Hybrid Approach,” vol. 15, no. 1, 2022.
[15] K. Kurniawan and S. Louvan, “I NDO S UM : A New Benchmark Dataset for Indonesian Text Summarization,” 2018 International Conference on Asian Language Processing (IALP), pp. 215–220, 2018.
[16] N. Babanejad, H. Davoudi, A. Agrawal, A. An, and M. Papagelis, “The Role of Preprocessing for Word Representation Learning in Affective Tasks,” IEEE Trans Affect Comput, vol. 15, no. 1, pp. 254–272, 2024, doi: 10.1109/TAFFC.2023.3270115.
[17] E. Qais and V. M. N., “TxtPrePro: Text Data Preprocessing Using Streamlit Technique for Text Analytics Process,” in 2023 International Conference on Network, Multimedia and Information Technology (NMITCON), 2023, pp. 1–6. doi: 10.1109/NMITCON58196.2023.10275887.
[18] G. Khekare, C. Masudi, Y. K. Chukka, and D. P. Koyyada, “Text Normalization and Summarization Using Advanced Natural Language Processing,” in 2024 International Conference on Integrated Circuits and Communication Systems (ICICACS), 2024, pp. 1–6. doi: 10.1109/ICICACS60521.2024.10498983.
[19] M. A. Dursun and S. Serttaş, “A Multi-Metric Model for analyzing and comparing extractive text summarization approaches and algorithms on scientific papers,” vol. 1, pp. 31–48, 2024, doi: 10.24012/dumf.1376978.
[20] A. R. Lubis, H. R. Safitri, and M. Lubis, “improving text summarization quality by combining T5-based models and convulutional seq2seq models,” vol. 5, no. 1, pp. 451–459, 2023.
[21] A. Al Foysal and R. Böck, “Who Needs External References ?— Text Summarization Evaluation Using Original Documents,” pp. 970–995, 2023.
[22] G. Erkan and D. R. Radev, “LexRank: Graph-based Lexical Centrality as Salience in Text Summarization,” Journal of Artificial Intelligence Research, vol. 22, pp. 457–479, Dec. 2004, doi: 10.1613/jair.1523.
[23] R. Mihalcea and D. Radey, “Graph-based natural language processing and information retrieval.,” Cambridge University Press, 2011.
[24] K. Clark, U. Khandelwal, O. Levy, and C. D. Manning, “What does BERT look at? an analysis of BERT’s attention,” arXiv preprint arXiv:1906.04341, 2019, doi: 10.18653/v1/W19-4828.
[25] S. MacAvaney, A. Yates, A. Cohan, and N. Goharian, “CEDR,” in Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA: ACM, Jul. 2019, pp. 1101–1104. doi: 10.1145/3331184.3331317.
[26] S. Narayan, S. B. Cohen, and M. Lapata, “Ranking Sentences for Extractive Summarization with Reinforcement Learning,” in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), Stroudsburg, PA, USA: Association for Computational Linguistics, 2018, pp. 1747–1759. doi: 10.18653/v1/N18-1158.
[27] C. Raffel et al., “Exploring the limits of transfer learning with a unified text-to-text transformer,” Journal of machine learning research, vol. 21, no. 140, pp. 1–67, 2020.
[28] L. Xue et al., “mt5: A massively multilingual pre-trained text-to-text transformer,” arXiv preprint arXiv:2010.11934, 2020, doi: 10.48550/arXiv.2010.11934.
[29] M. Lewis et al., “Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension,” arXiv preprint arXiv:1910.13461, 2019, doi: 10.48550/arXiv.1910.13461.
[30] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy, “Spanbert: Improving pre-training by representing and predicting spans,” Trans Assoc Comput Linguist, vol. 8, pp. 64–77, 2020.
[31] J. Ranganathan and G. Abuka, “Text Summarization using Transformer Model,” in 2022 Ninth International Conference on Social Networks Analysis, Management and Security (SNAMS), 2022, pp. 1–5. doi: 10.1109/SNAMS58071.2022.10062698.
[32] A. M. A. Zeyad and A. Biradar, “Advancements in the Efficacy of Flan-T5 for Abstractive Text Summarization: A Multi-Dataset Evaluation Using ROUGE and BERTScore,” in 2024 International Conference on Advancements in Power, Communication and Intelligent Systems (APCI), 2024, pp. 1–5. doi: 10.1109/APCI61480.2024.10616418.
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2025 Galih Wiratmoko, Husni Thamrin, Endang Wahyu Pamungkas

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License