Forecasting Shallot Prices in Indonesia Using News-Based Sentiment Indicators

Authors

  • Atikah Salsabila Department of Statistical Computing, Politeknik Statistika STIS, Jakarta, Indonesia
  • Rani Nooraeni Department of Statistical Computing, Politeknik Statistika STIS, Jakarta, Indonesia

DOI:

https://doi.org/10.15575/join.v10i1.1422

Keywords:

Online news, Price Forecasting, Sentiment analysis, Text mining, Time Series

Abstract

The volatile price changes of shallots are a challenge in controlling their prices. The fluctuation in the price of shallots is always reported in the media because it affects people's lives. The news is released online via the internet and has beneficial information so it can be utilized. This study aims to provide a comparative analysis of forecasting models for shallot prices in Indonesia, evaluating the impact of using the most effective sentiment indicators derived from four lexicon-based methods. Data were collected by scraping method on three news portals and one food price information source website during the period from 2020 to 2023. The correlation and causality analysis was conducted to determine the relationship between food prices and sentiment indicators that was obtained using four sentiment analysis methods. The selected sentiment indicators for each day were used as an additional variable in forecasting using ARIMA, SARIMA, and BSTS models. The results showed that the use of news sentiment could reduce RMSE, MAPE, and MAE in forecasting shallot food prices.

 

References

[1] O. Helbawanti, W. A. Saputro, and A. N. Ulfa, “Pengaruh Harga Bahan Pangan Terhadap Inflasi di Indonesia,” 2021.

[2] Y. Zhang and S. Na, “A novel agricultural commodity price forecasting model based on fuzzy information granulation and MEA-SVM model,” Math Probl Eng, vol. 2018, 2018, doi: 10.1155/2018/2540681.

[3] C. Z. Yuan and S. K. Ling, “Long Short-Term Memory Model Based Agriculture Commodity Price Prediction Application,” in ACM International Conference Proceeding Series, Association for Computing Machinery, Aug. 2020, pp. 43–49. doi: 10.1145/3417473.3417481.

[4] Bank Indonesia, “Penjelasan Indikator, Data dan Informasi PIHPS (Pusat Informasi Harga Pangan Strategis) Nasional (Frequently Asked Questions). .” Accessed: Jun. 10, 2024. [Online]. Available: https://www.bi.go.id/hargapangan/Informasi/FAQ

[5] Badan Pusat Statistik, “Statistik Holtikultura 2022,” Jakarta, 2023.

[6] dagmar Matoskova, “agricecon_age-201101-0005,” Agric. Econ. – Czech, 57, 2011 (1): 34–40, vol. 57, pp. 34–40, 2011.

[7] J. A. Wiralodra, A. Hasyim, A. Rosyid, C. Dhanes, N. Viana, and W. A. Saputro, “Penerapan Model Box Jenkins (ARIMA) Dalam Peramalan Harga Konsumen Bawang Merah di Provinsi Jawa Tengah,” 2021.

[8] M. A. Zen, S. Wahyuningsih, A. Tri, and R. Dani, “Aplikasi Pendekatan Agglomerative Hierarchical Time Series Clustering untuk Peramalan Data Harga Minyak Goreng di Indonesia (Application of Agglomerative Hierarchical Time Series Clustering Approach for Forecasting Cooking Oil Price Data in Indonesia),” Seminar Nasional Official Statistics, 2022.

[9] A. M. Windhy et al., “Peramalan Harga Cabai Merah Indonesia: Pendekatan ARIMA Forecasting Indonesian Red Chilli Prices: The ARIMA Approach,” 2021.

[10] Z. Wang, O. Kwon, and F. Liu, “Applying Keyword Analysis to Predicting Agriculture Product Price Index: The Case of the Chinese Farming Market,” Asia Pacific Journal of Business Review, vol. 1, no. 1, pp. 1–22, Aug. 2016, doi: 10.20522/apjbr.2016.1.1.1.

[11] J. Li, G. Li, M. Liu, X. Zhu, and L. Wei, “A novel text-based framework for forecasting agricultural futures using massive online news headlines,” Int J Forecast, vol. 38, no. 1, pp. 35–50, Jan. 2020, doi: 10.1016/j.ijforecast.2020.02.002.

[12] S. Tilly, M. Ebner, and G. Livan, “Macroeconomic forecasting through news, emotions and narrative,” Expert Syst Appl, vol. 175, p. 114760, Aug. 2021, doi: 10.1016/j.eswa.2021.114760.

[13] B. Pratap, A. Ranjan, V. Kishore, and B. B. Bhoi, “Forecasting Food Inflation using News-based Sentiment Indicators,” 2022. [Online]. Available: https://static.pib.gov.in/WriteReadData/specificdocs/documents/2021/oct/

[14] J. S. Bandara and Y. Cai, “The impact of climate change on food crop productivity, food prices and food security in South Asia,” Econ Anal Policy, vol. 44, no. 4, pp. 451–465, Oct. 2014, doi: 10.1016/j.eap.2014.09.005.

[15] J. Ha, S. Lee, and S. Kim, “Influence Relationship between Online News Articles and the Consumer Selling Price of Agricultural Products—Focusing on Onions,” Agriculture (Switzerland), vol. 13, no. 9, Sep. 2023, doi: 10.3390/agriculture13091707.

[16] F. Khairani, A. Kurnia, M. N. Aidi, and S. Pramana, “Predictions of Indonesia Economic Phenomena Based on Online News Using Random Forest,” SinkrOn, vol. 7, no. 2, pp. 532–540, Apr. 2022, doi: 10.33395/sinkron.v7i2.11401.

[17] A. H. Shapiro, M. Sudhof, and D. Wilson, “Measuring News Sentiment,” Federal Reserve Bank of San Francisco, Working Paper Series, pp. 01–49, Mar. 2020, doi: 10.24148/wp2017-01.

[18] J. Li, Z. Xu, H. Xu, L. Tang, and L. Yu, “Forecasting Oil Price Trends with Sentiment of Online News Articles,” Asia-Pacific Journal of Operational Research, vol. 34, no. 2, Apr. 2017, doi: 10.1142/S021759591740019X.

[19] V. Aprigliano, S. Emiliozzi, G. Guaitoli, A. Luciani, J. Marcucci, and L. Monteforte, “The power of text-based indicators in forecasting the Italian economic activity,” 2021.

[20] L. Barbaglia, S. Consoli, and S. Manzan, “Forecasting with Economic News,” Journal of Business and Economic Statistics, vol. 41, no. 3, pp. 708–719, 2023, doi: 10.1080/07350015.2022.2060988.

[21] C. Elleby, I. P. Domínguez, M. Adenauer, and G. Genovese, “Impacts of the COVID-19 Pandemic on the Global Agricultural Markets,” Environ Resour Econ (Dordr), vol. 76, no. 4, pp. 1067–1079, Aug. 2020, doi: 10.1007/s10640-020-00473-6.

[22] P. Eugster and M. W. Uhl, “Forecasting inflation using sentiment,” Econ Lett, vol. 236, p. 111575, Mar. 2024, doi: 10.1016/j.econlet.2024.111575.

[23] M. Nagib and Z. A. Husodo, “News Sentiment, News Intensity, and Price Movement of Indonesia’s 45 Most Liquid Stock Index,” The 5th International Conference on Business, Economics, Social Sciences, and Humanities, 2022.

[24] N. Feroze, “Forecasting the patterns of COVID-19 and causal impacts of lockdown in top five affected countries using Bayesian Structural Time Series Models,” Chaos Solitons Fractals, vol. 140, p. 110196, Nov. 2020, doi: 10.1016/j.chaos.2020.110196.

[25] detik.com, “copyright,” https://www.detik.com/copyright. Accessed: Jul. 01, 2024. [Online]. Available: https://www.detik.com/copyright

[26] okezone, “Term of Service,” https://management.okezone.com/term-of-service. Accessed: Jul. 01, 2024. [Online]. Available: https://management.okezone.com/term-of-service

[27] cnbc, “Terms,” https://www.cnbc.com/terms/. Accessed: Jul. 01, 2025. [Online]. Available: https://www.cnbc.com/terms/

[28] R. Catelli, S. Pelosi, and M. Esposito, “Lexicon-Based vs. Bert-Based Sentiment Analysis: A Comparative Study in Italian,” Electronics (Basel), vol. 11, no. 3, p. 374, Jan. 2022, doi: 10.3390/electronics11030374.

[29] T. Loughran and B. Mcdonald, “When is a Liability not a Liability? Textual Analysis, Dictionaries, and 10-Ks Journal of Finance, forthcoming,” 2011.

[30] E. Henry, “Are Investors Influenced By How Earnings Press Releases Are Written?,” Journal of Business Communication, vol. 45, no. 4, pp. 363–407, Oct. 2008, doi: 10.1177/0021943608319388.

[31] P. , Suanpang, P. , & Jamjuntr, P. Kaewyong, and P. Kaewyong, “Sentiment analysis with a textblob package implications for tourism,” Journal of Management Information and Decision Sciences, vol. 24, no. S6, pp. 1–9, 2021.

[32] F. Koto and G. Y. Rahmaningtyas, “Inset lexicon: Evaluation of a word list for Indonesian sentiment analysis in microblogs,” in 2017 International Conference on Asian Language Processing (IALP), IEEE, Dec. 2017, pp. 391–394. doi: 10.1109/IALP.2017.8300625.

[33] R. Nooraeni, N. P. Yudho, and N. S. Purba, “Using Google Trend Data as an Initial Signal Indonesia Unemployment Rate,” Conference: 62nd ISI World Statistic Congress , vol. 3, 2019, [Online]. Available: https://www.researchgate.net/publication/335320380

[34] Á. D. Hartvig, Á. Pap, and P. Pálos, “EU Climate Change News Index: Forecasting EU ETS prices with online news,” Financ Res Lett, vol. 54, Jun. 2023, doi: 10.1016/j.frl.2023.103720.

[35] S. Scott and H. Varian, “Bayesian Variable Selection for Nowcasting Economic Time Series,” Cambridge, MA, Oct. 2013. doi: 10.3386/w19567.

[36] F. R. Alharbi and D. Csala, “A Seasonal Autoregressive Integrated Moving Average with Exogenous Factors (SARIMAX) Forecasting Model-Based Time Series Approach,” Inventions, vol. 7, no. 4, p. 94, Oct. 2022, doi: 10.3390/inventions7040094.

[37] S. R. D. Setiawan, “Harga Bawang Merah Mahal, Ini Penyebabnya.Kompas. .” Accessed: Jun. 10, 2024. [Online]. Available: https://money.kompas.com/read/2020/06/23/154419726/harga-bawang-merah-mahal-ini-penyebabnya?page=all

[38] K. D. Utami, “Penurunan Produksi Picu Gejolak Harga Bawang Merah.” Accessed: Jun. 10, 2024. [Online]. Available: https://www.kompas.id/baca/nusantara/2022/07/03/penurunan-produksi-picu-gejolak-harga-bawang-merah

[39] I. Silfia, “Bawang Merah Turun Harga di Seluruh Wilayah Pada Agustus.” Accessed: Jun. 10, 2024. [Online]. Available: https://megapolitan.antaranews.com/berita/257532/bawang-merah-turun-harga-di-seluruh-wilayah-pada-agustus

[40] H. Wang, R. Yao, L. Hou, J. Zhao, X. Zhao, and S. HANA Core, “The 34th Canadian Conference on Artificial Intelligence A Methodology for Calculating the Contribution of Exogenous Variables to ARIMAX Predictions,” 2021.

Downloads

Published

2025-05-09

Issue

Section

Article

Citation Check

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.