Forecasting Shallot Prices in Indonesia Using News-Based Sentiment Indicators
DOI:
https://doi.org/10.15575/join.v10i1.1422Keywords:
Online news, Price Forecasting, Sentiment analysis, Text mining, Time SeriesAbstract
References
[1] O. Helbawanti, W. A. Saputro, and A. N. Ulfa, “Pengaruh Harga Bahan Pangan Terhadap Inflasi di Indonesia,” 2021.
[2] Y. Zhang and S. Na, “A novel agricultural commodity price forecasting model based on fuzzy information granulation and MEA-SVM model,” Math Probl Eng, vol. 2018, 2018, doi: 10.1155/2018/2540681.
[3] C. Z. Yuan and S. K. Ling, “Long Short-Term Memory Model Based Agriculture Commodity Price Prediction Application,” in ACM International Conference Proceeding Series, Association for Computing Machinery, Aug. 2020, pp. 43–49. doi: 10.1145/3417473.3417481.
[4] Bank Indonesia, “Penjelasan Indikator, Data dan Informasi PIHPS (Pusat Informasi Harga Pangan Strategis) Nasional (Frequently Asked Questions). .” Accessed: Jun. 10, 2024. [Online]. Available: https://www.bi.go.id/hargapangan/Informasi/FAQ
[5] Badan Pusat Statistik, “Statistik Holtikultura 2022,” Jakarta, 2023.
[6] dagmar Matoskova, “agricecon_age-201101-0005,” Agric. Econ. – Czech, 57, 2011 (1): 34–40, vol. 57, pp. 34–40, 2011.
[7] J. A. Wiralodra, A. Hasyim, A. Rosyid, C. Dhanes, N. Viana, and W. A. Saputro, “Penerapan Model Box Jenkins (ARIMA) Dalam Peramalan Harga Konsumen Bawang Merah di Provinsi Jawa Tengah,” 2021.
[8] M. A. Zen, S. Wahyuningsih, A. Tri, and R. Dani, “Aplikasi Pendekatan Agglomerative Hierarchical Time Series Clustering untuk Peramalan Data Harga Minyak Goreng di Indonesia (Application of Agglomerative Hierarchical Time Series Clustering Approach for Forecasting Cooking Oil Price Data in Indonesia),” Seminar Nasional Official Statistics, 2022.
[9] A. M. Windhy et al., “Peramalan Harga Cabai Merah Indonesia: Pendekatan ARIMA Forecasting Indonesian Red Chilli Prices: The ARIMA Approach,” 2021.
[10] Z. Wang, O. Kwon, and F. Liu, “Applying Keyword Analysis to Predicting Agriculture Product Price Index: The Case of the Chinese Farming Market,” Asia Pacific Journal of Business Review, vol. 1, no. 1, pp. 1–22, Aug. 2016, doi: 10.20522/apjbr.2016.1.1.1.
[11] J. Li, G. Li, M. Liu, X. Zhu, and L. Wei, “A novel text-based framework for forecasting agricultural futures using massive online news headlines,” Int J Forecast, vol. 38, no. 1, pp. 35–50, Jan. 2020, doi: 10.1016/j.ijforecast.2020.02.002.
[12] S. Tilly, M. Ebner, and G. Livan, “Macroeconomic forecasting through news, emotions and narrative,” Expert Syst Appl, vol. 175, p. 114760, Aug. 2021, doi: 10.1016/j.eswa.2021.114760.
[13] B. Pratap, A. Ranjan, V. Kishore, and B. B. Bhoi, “Forecasting Food Inflation using News-based Sentiment Indicators,” 2022. [Online]. Available: https://static.pib.gov.in/WriteReadData/specificdocs/documents/2021/oct/
[14] J. S. Bandara and Y. Cai, “The impact of climate change on food crop productivity, food prices and food security in South Asia,” Econ Anal Policy, vol. 44, no. 4, pp. 451–465, Oct. 2014, doi: 10.1016/j.eap.2014.09.005.
[15] J. Ha, S. Lee, and S. Kim, “Influence Relationship between Online News Articles and the Consumer Selling Price of Agricultural Products—Focusing on Onions,” Agriculture (Switzerland), vol. 13, no. 9, Sep. 2023, doi: 10.3390/agriculture13091707.
[16] F. Khairani, A. Kurnia, M. N. Aidi, and S. Pramana, “Predictions of Indonesia Economic Phenomena Based on Online News Using Random Forest,” SinkrOn, vol. 7, no. 2, pp. 532–540, Apr. 2022, doi: 10.33395/sinkron.v7i2.11401.
[17] A. H. Shapiro, M. Sudhof, and D. Wilson, “Measuring News Sentiment,” Federal Reserve Bank of San Francisco, Working Paper Series, pp. 01–49, Mar. 2020, doi: 10.24148/wp2017-01.
[18] J. Li, Z. Xu, H. Xu, L. Tang, and L. Yu, “Forecasting Oil Price Trends with Sentiment of Online News Articles,” Asia-Pacific Journal of Operational Research, vol. 34, no. 2, Apr. 2017, doi: 10.1142/S021759591740019X.
[19] V. Aprigliano, S. Emiliozzi, G. Guaitoli, A. Luciani, J. Marcucci, and L. Monteforte, “The power of text-based indicators in forecasting the Italian economic activity,” 2021.
[20] L. Barbaglia, S. Consoli, and S. Manzan, “Forecasting with Economic News,” Journal of Business and Economic Statistics, vol. 41, no. 3, pp. 708–719, 2023, doi: 10.1080/07350015.2022.2060988.
[21] C. Elleby, I. P. Domínguez, M. Adenauer, and G. Genovese, “Impacts of the COVID-19 Pandemic on the Global Agricultural Markets,” Environ Resour Econ (Dordr), vol. 76, no. 4, pp. 1067–1079, Aug. 2020, doi: 10.1007/s10640-020-00473-6.
[22] P. Eugster and M. W. Uhl, “Forecasting inflation using sentiment,” Econ Lett, vol. 236, p. 111575, Mar. 2024, doi: 10.1016/j.econlet.2024.111575.
[23] M. Nagib and Z. A. Husodo, “News Sentiment, News Intensity, and Price Movement of Indonesia’s 45 Most Liquid Stock Index,” The 5th International Conference on Business, Economics, Social Sciences, and Humanities, 2022.
[24] N. Feroze, “Forecasting the patterns of COVID-19 and causal impacts of lockdown in top five affected countries using Bayesian Structural Time Series Models,” Chaos Solitons Fractals, vol. 140, p. 110196, Nov. 2020, doi: 10.1016/j.chaos.2020.110196.
[25] detik.com, “copyright,” https://www.detik.com/copyright. Accessed: Jul. 01, 2024. [Online]. Available: https://www.detik.com/copyright
[26] okezone, “Term of Service,” https://management.okezone.com/term-of-service. Accessed: Jul. 01, 2024. [Online]. Available: https://management.okezone.com/term-of-service
[27] cnbc, “Terms,” https://www.cnbc.com/terms/. Accessed: Jul. 01, 2025. [Online]. Available: https://www.cnbc.com/terms/
[28] R. Catelli, S. Pelosi, and M. Esposito, “Lexicon-Based vs. Bert-Based Sentiment Analysis: A Comparative Study in Italian,” Electronics (Basel), vol. 11, no. 3, p. 374, Jan. 2022, doi: 10.3390/electronics11030374.
[29] T. Loughran and B. Mcdonald, “When is a Liability not a Liability? Textual Analysis, Dictionaries, and 10-Ks Journal of Finance, forthcoming,” 2011.
[30] E. Henry, “Are Investors Influenced By How Earnings Press Releases Are Written?,” Journal of Business Communication, vol. 45, no. 4, pp. 363–407, Oct. 2008, doi: 10.1177/0021943608319388.
[31] P. , Suanpang, P. , & Jamjuntr, P. Kaewyong, and P. Kaewyong, “Sentiment analysis with a textblob package implications for tourism,” Journal of Management Information and Decision Sciences, vol. 24, no. S6, pp. 1–9, 2021.
[32] F. Koto and G. Y. Rahmaningtyas, “Inset lexicon: Evaluation of a word list for Indonesian sentiment analysis in microblogs,” in 2017 International Conference on Asian Language Processing (IALP), IEEE, Dec. 2017, pp. 391–394. doi: 10.1109/IALP.2017.8300625.
[33] R. Nooraeni, N. P. Yudho, and N. S. Purba, “Using Google Trend Data as an Initial Signal Indonesia Unemployment Rate,” Conference: 62nd ISI World Statistic Congress , vol. 3, 2019, [Online]. Available: https://www.researchgate.net/publication/335320380
[34] Á. D. Hartvig, Á. Pap, and P. Pálos, “EU Climate Change News Index: Forecasting EU ETS prices with online news,” Financ Res Lett, vol. 54, Jun. 2023, doi: 10.1016/j.frl.2023.103720.
[35] S. Scott and H. Varian, “Bayesian Variable Selection for Nowcasting Economic Time Series,” Cambridge, MA, Oct. 2013. doi: 10.3386/w19567.
[36] F. R. Alharbi and D. Csala, “A Seasonal Autoregressive Integrated Moving Average with Exogenous Factors (SARIMAX) Forecasting Model-Based Time Series Approach,” Inventions, vol. 7, no. 4, p. 94, Oct. 2022, doi: 10.3390/inventions7040094.
[37] S. R. D. Setiawan, “Harga Bawang Merah Mahal, Ini Penyebabnya.Kompas. .” Accessed: Jun. 10, 2024. [Online]. Available: https://money.kompas.com/read/2020/06/23/154419726/harga-bawang-merah-mahal-ini-penyebabnya?page=all
[38] K. D. Utami, “Penurunan Produksi Picu Gejolak Harga Bawang Merah.” Accessed: Jun. 10, 2024. [Online]. Available: https://www.kompas.id/baca/nusantara/2022/07/03/penurunan-produksi-picu-gejolak-harga-bawang-merah
[39] I. Silfia, “Bawang Merah Turun Harga di Seluruh Wilayah Pada Agustus.” Accessed: Jun. 10, 2024. [Online]. Available: https://megapolitan.antaranews.com/berita/257532/bawang-merah-turun-harga-di-seluruh-wilayah-pada-agustus
[40] H. Wang, R. Yao, L. Hou, J. Zhao, X. Zhao, and S. HANA Core, “The 34th Canadian Conference on Artificial Intelligence A Methodology for Calculating the Contribution of Exogenous Variables to ARIMAX Predictions,” 2021.
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2025 Atikah Salsabila, Rani Nooraeni

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License