Comparison of Machine Learning Classification Methods in Hepatitis C Virus

Authors

  • Lailis Syafa’ah Department of Electrical Engineering, Universitas Muhammadiyah Malang, Indonesia, Indonesia
  • Zulfatman Zulfatman Department of Electrical Engineering, Universitas Muhammadiyah Malang, Indonesia, Indonesia
  • Ilham Pakaya Department of Electrical Engineering, Universitas Muhammadiyah Malang, Indonesia, Indonesia
  • Merinda Lestandy Department of D3 Electronics Technology, Universitas Muhammadiyah Malang, Indonesia, Indonesia

DOI:

https://doi.org/10.15575/join.v6i1.719

Keywords:

HCV, KNN, Naïve Bayes, Neural network, Random forest, Classification, Machine learning

Abstract

The hepatitis C virus (HCV) is considered a problem to the health of societies are the main. There are around 120-130 million or 3% of the world's total population infected with HCV. Without treatment, most major infectious acute evolve into chronic, followed by diseases liver, such as cirrhosis and cancer liver. The data parameters used in this study included albumin (ALB), bilirubin (BIL), choline esterase (CHE), -glutamyl-transferase (GGT), aspartate amino-transferase (AST), alanine amino-transferase (ALT), cholesterol (CHOL), creatinine (CREA), protein (PROT), and Alkaline phosphatase (ALP). This research proposes a methodology based on machine learning classification methods including k-nearest neighbors, naïve Bayes, neural network, and random forest. The aim of this study is to assess and evaluate the level of accuracy using the algorithm classification machine learning to detect the disease HCV. The result show that the accuracy of the method NN has a value of accuracy are high, namely at 95.12% compared to the method KNN, naïve Bayes and RF in a row amounted to 89.43%, 90.24%, and 94.31%.

References

K. Mohd Hanafiah, J. Groeger, A. D. Flaxman, and S. T. Wiersma, “Global epidemiology of hepatitis C virus infection: New estimates of age-specific antibody to HCV seroprevalence,†Hepatology, vol. 57, no. 4, pp. 1333–1342, 2013, doi: 10.1002/hep.26141.

A. M. Hauri, G. L. Armstrong, and Y. J. F. Hutin, “The global burden of disease attributable to contaminated injections given in health care settings,†Int. J. STD AIDS, vol. 15, no. 1, pp. 7–16, 2004, doi: 10.1258/095646204322637182.

A. Alberti, “What are the comorbidities influencing the management of patients and the response to therapy in chronic hepatitis C?,†Liver Int., vol. 29, no. SUPPL. 1, pp. 15–18, 2009, doi: 10.1111/j.1478-3231.2008.01945.x.

F. R. Ponziani, A. Gasbarrini, M. Pompili, P. Burra, and S. Fagiuoli, “Management of hepatitis C virus infection recurrence after liver transplantation: An overview,†Transplant. Proc., vol. 43, no. 1, pp. 291–295, 2011, doi: 10.1016/j.transproceed.2010.09.102.

G. L. Davis, M. J. Alter, H. El-Serag, T. Poynard, and L. W. Jennings, “Aging of Hepatitis C Virus (HCV)-Infected Persons in the United States: A Multiple Cohort Model of HCV Prevalence and Disease Progression,†Gastroenterology, vol. 138, no. 2, pp. 513-521.e6, 2010, doi: 10.1053/j.gastro.2009.09.067.

H. Razavi et al., “The present and future disease burden of hepatitis C virus (HCV) infection with today’s treatment paradigm,†J. Viral Hepat., vol. 21, pp. 34–59, 2014, doi: 10.1111/jvh.12248.

F. Kanwal et al., “Increasing prevalence of HCC and cirrhosis in patients with chronic hepatitis C virus infection,†Gastroenterology, vol. 140, no. 4, pp. 1182-1188.e1, 2011, doi: 10.1053/j.gastro.2010.12.032.

Y. Arase et al., “Sustained virological response reduces incidence of onset of type 2 diabetes in chronic hepatitis C,†Hepatology, vol. 49, no. 3, pp. 739–744, 2009, doi: 10.1002/hep.22703.

S. Ansari, I. Shafi, A. Ansari, J. Ahmad, and S. I. Shah, “Diagnosis of liver disease induced by hepatitis virus using artificial neural networks,†Proc. 14th IEEE Int. Multitopic Conf. 2011, INMIC 2011, pp. 8–12, 2011, doi: 10.1109/INMIC.2011.6151515.

G. Hoffmann, A. Bietenbeck, R. Lichtinghagen, and F. Klawonn, “Using machine learning techniques to generate laboratory diagnostic pathways—a case study,†J. Lab. Precis. Med., vol. 3, pp. 58–58, 2018, doi: 10.21037/jlpm.2018.06.01.

S. Hashem et al., “Comparison of Machine Learning Approaches for Prediction of Advanced Liver Fibrosis in Chronic Hepatitis C Patients,†IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. 15, no. 3, pp. 861–868, 2018, doi: 10.1109/TCBB.2017.2690848.

G. Suwardika, “Pengelompokan Dan Klasifikasi Pada Data Hepatitis Dengan Menggunakan Support Vector Machine (SVM), Classification And Regression Tree (Cart) Dan Regresi Logistik Biner,†J. Educ. Res. Eval., vol. 1, no. 3, p. 183, 2017, doi: 10.23887/jere.v1i3.12016.

S.-H. Wu, “Machine Learning Notation,†IEEE Softw., vol. 33, pp. 1–2, 2009, doi: 10.1109/MS.2016.114.

E. Alpaydin, “Voting over Multiple Condensed Nearest Neighbors,†Artif. Intell. Rev., vol. 11, no. 1–5, pp. 115–132, 1997, doi: 10.1007/978-94-017-2053-3_4.

R. Kurniawan, N. Yanti, M. Z. Ahmad Nazri, and Zulvandri, “Expert systems for self-diagnosing of eye diseases using Naïve Bayes,†Proc. - 2014 Int. Conf. Adv. Informatics Concept, Theory Appl. ICAICTA 2014, pp. 113–116, 2015, doi: 10.1109/ICAICTA.2014.7005925.

S. Tschiatschek, K. Paul, and F. Pernkopf, “Integer Bayesian network classifiers,†Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8726 LNAI, no. PART 3, pp. 209–224, 2014, doi: 10.1007/978-3-662-44845-8_14.

M. M. S. Mishra, “A View of Artificial Neural Network,†IEEE Int. Conf. Adv. Eng. Technol. Res. (ICAETR - 2014), August 01-02, 2014, Dr. Virendra Swarup Gr. Institutions, Unnao, India, no. c, pp. 5414–5420, 2014, [Online]. Available: https://ieeexplore.ieee.org/document/7012785.

S. Kabiraj et al., “Breast Cancer Risk Prediction using XGBoost and Random Forest Algorithm,†2020 11th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2020, pp. 1–4, 2020, doi: 10.1109/ICCCNT49239.2020.9225451.

K. Polat and S. Güneş, “Breast cancer diagnosis using least square support vector machine,†Digit. Signal Process. A Rev. J., vol. 17, no. 4, pp. 694–701, 2007, doi: 10.1016/j.dsp.2006.10.008.

Downloads

Published

2021-06-17

Issue

Section

Article

Citation Check

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.