Comparison of Machine Learning Classification Methods in Hepatitis C Virus
DOI:
https://doi.org/10.15575/join.v6i1.719Keywords:
HCV, KNN, Naïve Bayes, Neural network, Random forest, Classification, Machine learningAbstract
References
K. Mohd Hanafiah, J. Groeger, A. D. Flaxman, and S. T. Wiersma, “Global epidemiology of hepatitis C virus infection: New estimates of age-specific antibody to HCV seroprevalence,†Hepatology, vol. 57, no. 4, pp. 1333–1342, 2013, doi: 10.1002/hep.26141.
A. M. Hauri, G. L. Armstrong, and Y. J. F. Hutin, “The global burden of disease attributable to contaminated injections given in health care settings,†Int. J. STD AIDS, vol. 15, no. 1, pp. 7–16, 2004, doi: 10.1258/095646204322637182.
A. Alberti, “What are the comorbidities influencing the management of patients and the response to therapy in chronic hepatitis C?,†Liver Int., vol. 29, no. SUPPL. 1, pp. 15–18, 2009, doi: 10.1111/j.1478-3231.2008.01945.x.
F. R. Ponziani, A. Gasbarrini, M. Pompili, P. Burra, and S. Fagiuoli, “Management of hepatitis C virus infection recurrence after liver transplantation: An overview,†Transplant. Proc., vol. 43, no. 1, pp. 291–295, 2011, doi: 10.1016/j.transproceed.2010.09.102.
G. L. Davis, M. J. Alter, H. El-Serag, T. Poynard, and L. W. Jennings, “Aging of Hepatitis C Virus (HCV)-Infected Persons in the United States: A Multiple Cohort Model of HCV Prevalence and Disease Progression,†Gastroenterology, vol. 138, no. 2, pp. 513-521.e6, 2010, doi: 10.1053/j.gastro.2009.09.067.
H. Razavi et al., “The present and future disease burden of hepatitis C virus (HCV) infection with today’s treatment paradigm,†J. Viral Hepat., vol. 21, pp. 34–59, 2014, doi: 10.1111/jvh.12248.
F. Kanwal et al., “Increasing prevalence of HCC and cirrhosis in patients with chronic hepatitis C virus infection,†Gastroenterology, vol. 140, no. 4, pp. 1182-1188.e1, 2011, doi: 10.1053/j.gastro.2010.12.032.
Y. Arase et al., “Sustained virological response reduces incidence of onset of type 2 diabetes in chronic hepatitis C,†Hepatology, vol. 49, no. 3, pp. 739–744, 2009, doi: 10.1002/hep.22703.
S. Ansari, I. Shafi, A. Ansari, J. Ahmad, and S. I. Shah, “Diagnosis of liver disease induced by hepatitis virus using artificial neural networks,†Proc. 14th IEEE Int. Multitopic Conf. 2011, INMIC 2011, pp. 8–12, 2011, doi: 10.1109/INMIC.2011.6151515.
G. Hoffmann, A. Bietenbeck, R. Lichtinghagen, and F. Klawonn, “Using machine learning techniques to generate laboratory diagnostic pathways—a case study,†J. Lab. Precis. Med., vol. 3, pp. 58–58, 2018, doi: 10.21037/jlpm.2018.06.01.
S. Hashem et al., “Comparison of Machine Learning Approaches for Prediction of Advanced Liver Fibrosis in Chronic Hepatitis C Patients,†IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. 15, no. 3, pp. 861–868, 2018, doi: 10.1109/TCBB.2017.2690848.
G. Suwardika, “Pengelompokan Dan Klasifikasi Pada Data Hepatitis Dengan Menggunakan Support Vector Machine (SVM), Classification And Regression Tree (Cart) Dan Regresi Logistik Biner,†J. Educ. Res. Eval., vol. 1, no. 3, p. 183, 2017, doi: 10.23887/jere.v1i3.12016.
S.-H. Wu, “Machine Learning Notation,†IEEE Softw., vol. 33, pp. 1–2, 2009, doi: 10.1109/MS.2016.114.
E. Alpaydin, “Voting over Multiple Condensed Nearest Neighbors,†Artif. Intell. Rev., vol. 11, no. 1–5, pp. 115–132, 1997, doi: 10.1007/978-94-017-2053-3_4.
R. Kurniawan, N. Yanti, M. Z. Ahmad Nazri, and Zulvandri, “Expert systems for self-diagnosing of eye diseases using Naïve Bayes,†Proc. - 2014 Int. Conf. Adv. Informatics Concept, Theory Appl. ICAICTA 2014, pp. 113–116, 2015, doi: 10.1109/ICAICTA.2014.7005925.
S. Tschiatschek, K. Paul, and F. Pernkopf, “Integer Bayesian network classifiers,†Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8726 LNAI, no. PART 3, pp. 209–224, 2014, doi: 10.1007/978-3-662-44845-8_14.
M. M. S. Mishra, “A View of Artificial Neural Network,†IEEE Int. Conf. Adv. Eng. Technol. Res. (ICAETR - 2014), August 01-02, 2014, Dr. Virendra Swarup Gr. Institutions, Unnao, India, no. c, pp. 5414–5420, 2014, [Online]. Available: https://ieeexplore.ieee.org/document/7012785.
S. Kabiraj et al., “Breast Cancer Risk Prediction using XGBoost and Random Forest Algorithm,†2020 11th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2020, pp. 1–4, 2020, doi: 10.1109/ICCCNT49239.2020.9225451.
K. Polat and S. Güneş, “Breast cancer diagnosis using least square support vector machine,†Digit. Signal Process. A Rev. J., vol. 17, no. 4, pp. 694–701, 2007, doi: 10.1016/j.dsp.2006.10.008.
Downloads
Published
Issue
Section
Citation Check
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License







