Development of a Mobile-Based Application for Classifying Caladium Plants Using the CNN Algorithm
DOI:
https://doi.org/10.15575/join.v9i1.1296Keywords:
Calladium, Classification, CNN, Confusion Matrix, Deep LearningAbstract
References
R. P. Damayanti and A. Susanti, “ANTESENDEN KEPUTUSAN PEMBELIAN TANAMAN HIAS PADA MASA PANDEMI DI SURAKARTA,” JURNAL LENTERA BISNIS, vol. 10, no. 2, p. 172, Aug. 2021, doi: 10.34127/jrlab.v10i2.439.
E. U. Kalsum and A. Daulay, “PEMANFAATAN KELADI HIAS DALAM MENAMBAH PENGHASILAN RUMAH TANGGA,” Jurnal Derma Pengabdian Dosen Perguruan Tinggi (Jurnal DEPUTI), vol. 1, no. 1, 2021, doi: 10.54123/deputi.v1i1.57.
A. V. Fitria et al., “POTENSI TANAMAN KELADI SEBAGAI PENUNJANG PEREKONOMIAN MASYARAKAT DIMASA PANDEMI,” Journal Science Innovation and Technology (SINTECH), vol. 3, no. 1, pp. 15–24, 2022, doi: 10.47701/sintech.v3i1.2526.
A. Permatasari et al., “Pembentukan Rumah Vegetatif Tanaman Hias Sebagai Wadah Pemberdayaan Ibu Rumah Tangga Desa Sipungguk, Kabupaten Kampar, Riau (The Establishment of Vegetative House for Ornamental Plants as an Empowerment of Housewives in Sipungguk Village, Kampar District, Riau),” Agrokreatif, vol. 8, no. 2, 2022.
A. R. Supratman and A. Purwantoro, “Karakterisasi Tanaman Keladi Hias (Caladium Spp) berdasarkan Penanda Molekuler RAPD,” Vegetalika, vol. 10, no. 4, p. 287, Nov. 2021, doi: 10.22146/veg.37168.
A. Peryanto, A. Yudhana, and R. Umar, “Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation,” Journal of Applied Informatics and Computing (JAIC), vol. 4, no. 1, p. 45, 2020, doi: 10.30871/jaic.v4i1.2017.
C. Umam and L. B. Handoko, “CONVOLUTIONAL NEURAL NETWORK (CNN) FOR HIRAGANA CHARACTER IDENTIFICATION,” Purwokerto: PROSIDING SEMINAR NASIONAL LPPM UMP, 2020, pp. 527–533.
A. Laishram and K. Thongam, “Automatic Classification of Oral Pathologies Using Orthopantomogram Radiography Images Based on Convolutional Neural Network,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 7, no. 4, pp. 69–77, 2022, doi: 10.9781/ijimai.2021.10.009.
Y. Purna Irawan, I. Susilawati, and K. Kunci, “Klasifikasi Jenis Aglaonema Berdasarkan Citra Daun Menggunakan Convolutional Neural Network (CNN),” Jurnal of Information System & Artificial Intelligence (JISAI), vol. 2, no. 2, pp. 150–156, 2022, doi: 10.26486/jisai.v2i2.57.
S. S. M. Sheet et al., “Convolution neural network model for fundus photograph quality assessment,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 26, no. 2, pp. 915–923, May 2022, doi: 10.11591/ijeecs.v26.i2.pp915-923.
I. A. Anjani, Y. R. Pratiwi, and S. Norfa Bagas Nurhuda, “Implementation of Deep Learning Using Convolutional Neural Network Algorithm for Classification Rose Flower,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Mar. 2021. doi: 10.1088/1742-6596/1842/1/012002.
R. Chandra, S. An-Nissa, and E. M. Zamzami, “Comparative Analysis of Eigenface and Learning Vector Quantization (LVQ) to Face Recognition,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Jul. 2020. doi: 10.1088/1742-6596/1566/1/012012.
L. Minfei, G. Yidong, C. Ze, W. Zhi, S. Erik, and Š. Branko, “Microstructure-informed deep convolutional neural network for predicting short-term creep modulus of cement paste,” Cem Concr Res, vol. 152, p. 106681, Feb. 2022, doi: 10.1016/J.CEMCONRES.2021.106681.
M. Shanthi and C. H. Arun, “Deep Learning Algorithms for Diagnosing Covid 19 Based on X-Ray and CT Images 541 Original Scientific Paper,” International Journal of Electrical and Computer Engineering Systems, vol. 13, no. 7, pp. 541–549, 2022, doi: 10.32985/ijeces.13.7.6.
A. Tsany and R. Dzaky, “Deteksi Penyakit Tanaman Cabai Menggunakan Metode Convolutional Neural Network,” eProceeding of Engineering, vol. 8, no. 2, pp. 3039–3055, 2021.
E. N. Arrofiqoh and H. Harintaka, “IMPLEMENTASI METODE CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI TANAMAN PADA CITRA RESOLUSI TINGGI,” GEOMATIKA, vol. 24, no. 2, p. 61, Nov. 2018, doi: 10.24895/JIG.2018.24-2.810.
A. Y. Saleh, C. K. Chin, V. Penshie, and H. R. H. Al-Absi, “Lung cancer medical images classification using hybrid cnn-svm,” International Journal of Advances in Intelligent Informatics, vol. 7, no. 2, pp. 151–162, Jul. 2021, doi: 10.26555/ijain.v7i2.317.
Z. Yi, “Evaluation and Implementation of Convolutional Neural Networks in Image Recognition,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Oct. 2018. doi: 10.1088/1742-6596/1087/6/062018.
A. I. Lubis and R. Chandra, “Forward Selection Attribute Reduction Technique for Optimizing Naïve Bayes Performance in Sperm Fertility Prediction,” Sinkron, vol. 8, no. 1, pp. 275–285, Jan. 2023, doi: 10.33395/sinkron.v8i1.11967.
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2024 Rudy Chandra, Tegar Arifin Prasetyo, Heni Ernita Lumbangaol, Veny Siahaan, Johan Immanuel Sianipar
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License