Modality-based Modeling with Data Balancing and Dimensionality Reduction for Early Stunting Detection
DOI:
https://doi.org/10.15575/join.v10i1.1495Keywords:
Data Balancing, Dimensionality Reduction, Multimodal, Stunting, UnimodalAbstract
References
[1] W. Hadikurniawati, K. Dwi Hartomo, I. Sembiring, H. Dwi Purnomo, and A. Iriani, “Triangular fuzzy numbers-based MADM for selecting pregnant mothers at risk of stunting,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 3, pp. 579–585, Jun. 2023, doi: 10.29207/resti.v7i3.4966.
[2] L. A. Jokhu, A. Syauqy, L. Y. Lin, F. F. Dieny, and A. Rahadiyanti, “Determinants of stunting among children 6–23 months: a population-based study in Indonesia,” Nutr Food Sci, 2024, doi: 10.1108/NFS-01-2024-0025.
[3] I. K. Hasan, Nurwan, Nur Falaq, and Muhammad Rezky Friesta Payu, “Optimization Fuzzy Geographically Weighted Clustering with Gravitational Search Algorithm for Factors Analysis Associated with Stunting,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 1, pp. 120–128, Feb. 2023, doi: 10.29207/resti.v7i1.4508.
[4] Y. Yuliana, P. Paradise, and M. Qulub, “DETECTION OF CHILDREN’S NUTRITIONAL STATUS USING MACHINE LEARNING WITH LOGISTIC REGRESSION ALGORITHM,” JURTEKSI (Jurnal Teknologi dan Sistem Informasi), vol. 10, no. 2, pp. 267–274, Mar. 2024, doi: 10.33330/jurteksi.v10i2.2973.
[5] R. Gustriansyah, N. Suhandi, S. Puspasari, and A. Sanmorino, “Machine Learning Method to Predict the Toddlers’ Nutritional Status,” JURNAL INFOTEL, vol. 16, no. 1, Jan. 2024, doi: 10.20895/infotel.v15i4.988.
[6] A. A. Ningrum and Y. Ikawati, “Early Detection of Stunting Based on Feature Engineering and Machine Learning Algorithm Approach,” Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics, vol. 6, no. 3, pp. 147–155, 2024, doi: 10.35882/ijeeemi.v6i3.6.
[7] A. A. Permana, B. Raharja, and A. T. Perdana, “Artificial Intelligence for Diagnosing Child Stunting: A Systematic Literature Review,” Journal of System and Management Sciences, vol. 13, no. 6, pp. 605–621, 2023, doi: 10.33168/JSMS.2023.0635.
[8] R. Saragih, E. N. Saputra, D. Setiadikarunia, and J. J. Jarden, “Perbandingan Teknik Klasifikasi Fast Null-space Based Linear Discriminant Analysis (FNLDA) dan Direct Linear Discriminant Analysis (DLDA) dalam Pengenalan Citra Multimodal Wajah atau Pembuluh Darah di Telapak Tangan,” Jurnal Ecotipe (Electronic, Control, Telecommunication, Information, and Power Engineering), vol. 9, no. 1, pp. 40–48, Apr. 2022, doi: 10.33019/jurnalecotipe.v9i1.2867.
[9] Y. Wang et al., “Geometric Correspondence-Based Multimodal Learning for Ophthalmic Image Analysis,” IEEE Trans Med Imaging, vol. 43, no. 5, pp. 1945–1957, May 2024, doi: 10.1109/TMI.2024.3352602.
[10] K. N. Singh, O. P. Singh, A. K. Singh, and A. K. Agrawal, “WatMIF: Multimodal Medical Image Fusion-Based Watermarking for Telehealth Applications,” Cognit Comput, vol. 16, no. 4, pp. 1947–1963, Jul. 2024, doi: 10.1007/s12559-022-10040-4.
[11] C. Cui et al., “Deep multimodal fusion of image and non-image data in disease diagnosis and prognosis: a review,” Progress in Biomedical Engineering, vol. 5, no. 2, Apr. 2023, doi: 10.1088/2516-1091/acc2fe.
[12] F. Behrad and M. Saniee Abadeh, “An overview of deep learning methods for multimodal medical data mining,” Aug. 15, 2022, Elsevier Ltd. doi: 10.1016/j.eswa.2022.117006.
[13] C. Liu, Z. Mao, T. Zhang, A. A. Liu, B. Wang, and Y. Zhang, “Focus Your Attention: A Focal Attention for Multimodal Learning,” IEEE Trans Multimedia, vol. 24, pp. 103–115, 2022, doi: 10.1109/TMM.2020.3046855.
[14] D. Elreedy, A. F. Atiya, and F. Kamalov, “A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning,” Mach Learn, vol. 113, no. 7, pp. 4903–4923, Jul. 2024, doi: 10.1007/s10994-022-06296-4.
[15] M. Greenacre et al., “Economics Working Paper Series Principal component analysis Principal Component Analysis,” Barcelona, Jan. 2023.
[16] U. N. Wisesty, T. A. B. Wirayuda, F. Sthevanie, and R. Rismala, “Analysis of Data and Feature Processing on Stroke Prediction using Wide Range Machine Learning Model,” Jurnal Online Informatika, vol. 9, no. 1, pp. 29–40, Apr. 2024, doi: 10.15575/join.v9i1.1249.
[17] Y. Yin, H. Wang, S. Liu, J. Sun, P. Jing, and Y. Liu, “Internet of Things for Diagnosis of Alzheimer’s Disease: A Multimodal Machine Learning Approach Based on Eye Movement Features,” IEEE Internet Things J, vol. 10, no. 13, pp. 11476–11485, Jul. 2023, doi: 10.1109/JIOT.2023.3245067.
[18] M. Ula, S. Fachrurrazi, and R. Achmad Rizal, “IMPLEMENTATION OF DATA MINING MODELS WITH ALGORITHMS K-NEAREST NEIGHBOR IN MONITORING THE NUTRITIONAL STATUS OF CHILDREN AND STUNTING,” Journal of Information Systems and Computer Science Prima), vol. 6, no. 2, 2023.
[19] M. I. Irawan, M. H. Z. Al Faroby, and A. P. Dyah Nurhayati, “In Silico Analysis Using Hybrid Support Vector Machine and Second Order of Markov Chain for Multiple Sequence Alignment to Identify the Types of Leukaemia,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Nov. 2019. doi: 10.1088/1742-6596/1366/1/012052.
[20] A. Nugroho, H. L. Hendric, S. Warnars, F. L. Gaol, and T. Matsuo, “Trend of Stunting Weight for Infants and Toddlers Using Decision Tree,” Int J Appl Math (Sofia), vol. 52, no. 1, Mar. 2022.
[21] Y. Setiawan, O. A. Permata, and M. P. Yuda, “Decision Tree based Data Modelling for First Detection of Thalassemia Major,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 13, no. 1, pp. 49–56, Feb. 2024, doi: 10.32736/sisfokom.v13i1.1949.
[22] I. D. Mienye and Y. Sun, “A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects,” 2022, Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/ACCESS.2022.3207287.
[23] O. N. Chilyabanyama et al., “Performance of Machine Learning Classifiers in Classifying Stunting among Under-Five Children in Zambia,” Children, vol. 9, no. 7, Jul. 2022, doi: 10.3390/children9071082.
[24] A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,” Front Neurorobot, vol. 7, no. 21, 2013, doi: 10.3389/fnbot.2013.00021.
[25] M. H. Z. AlFaroby, H. N. Fadhilah, S. Amiroch, and R. S. Hidayat, “XGB-Hybrid Fingerprint Classification Model for Virtual Screening of Meningitis Drug Compounds Candidate,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Jun. 2022, doi: 10.22219/kinetik.v7i2.1424.
[26] D. A. McCarty, H. W. Kim, and H. K. Lee, “Evaluation of light gradient boosted machine learning technique in large scale land use and land cover classification,” Environments - MDPI, vol. 7, no. 10, pp. 1–22, Oct. 2020, doi: 10.3390/environments7100084.
[27] D. Niu, L. Diao, Z. Zang, H. Che, T. Zhang, and X. Chen, “A Machine-Learning Approach Combining Wavelet Packet Denoising with Catboost for Weather Forecasting,” Atmosphere (Basel), vol. 12, no. 12, Dec. 2021, doi: 10.3390/atmos12121618.
[28] J. Tanha, Y. Abdi, N. Samadi, N. Razzaghi, and M. Asadpour, “Boosting methods for multi-class imbalanced data classification: an experimental review,” J Big Data, vol. 7, no. 1, Dec. 2020, doi: 10.1186/s40537-020-00349-y.
[29] F. Wang, Z. Li, F. He, R. Wang, W. Yu, and F. Nie, “Feature Learning Viewpoint of Adaboost and a New Algorithm,” IEEE Access, vol. 7, pp. 149890–149899, 2019, doi: 10.1109/ACCESS.2019.2947359.
[30] H. Jafarzadeh, M. Mahdianpari, E. Gill, F. Mohammadimanesh, and S. Homayouni, “Bagging and boosting ensemble classifiers for classification of multispectral, hyperspectral and polSAR data: A comparative evaluation,” Remote Sens (Basel), vol. 13, no. 21, Nov. 2021, doi: 10.3390/rs13214405.
[31] F. M. Amin, D. Candra, and R. Novitasari, “Identification of Stunting Disease using Anthropometry Data and Long Short-Term Memory (LSTM) Model,” Computer Engineering and Applications, vol. 11, no. 1, 2022.
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2025 Yohanes Setiawan, Mohammad Hamim Zajuli Al Faroby, Mochamad Nizar Palefi Ma’ady, I Made Wisnu Adi Sanjaya, Cisa Valentino Cahya Ramadhani

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License