Multiscale Retinex Application to Analyze Face Recognition

Authors

  • Supriyanto Supriyanto Department of Computer and Informatics Engineering, Politeknik Negeri Bandung, Indonesia, Indonesia
  • Maisevli Harika Computer Vision and Artificial Intelligence Lab, Pukyong National University, Busan, South Korea, Korea, Republic of
  • Maya Sri Ramadiani Department of Computer and Informatics Engineering, Politeknik Negeri Bandung, Indonesia, Indonesia
  • Diena Rauda Ramdania Department of Informatics, UIN Sunan Gunung Djati Bandung, Indonesia, Indonesia

DOI:

https://doi.org/10.15575/join.v5i2.668

Keywords:

Face recognition, Lumination, Multiscale retinex, Principal component analysis, Variations

Abstract

The main challenge that facial recognition introduces is the difficulty of uneven lighting or dark tendencies. The image is poorly lit, which makes it difficult for the system to perform facial recognition. This study aims to normalize the lighting in the image using the Multiscale Retinex method. This method is applied to a face recognition system based on Principal Component Analysis to determine whether this method effectively improves images with uneven lighting. The results showed that the Multiscale Retinex approach to face recognition's correctness was better, from 40% to 76%. Multiscale Retinex has the advantage of dark facial image types because it produces a brighter image output.

Author Biography

Maisevli Harika, Computer Vision and Artificial Intelligence Lab, Pukyong National University, Busan, South Korea

References

H. F. Neo, R. Devinaga, D. K. T. Yoon, and C. C. Teo, “Tourists’ satisfaction in the use of biometrics technology: A conceptual paper,†J. Econ. Bus. Manag., vol. 3, no. 1, pp. 98–103, 2015.

SITA, “Indonesia tightens border control with SITA’s extensive biometric system - International Airport Review,†2011. [Online]. Available: https://www.internationalairportreview.com/news/6835/indonesia-tightens-border-control-with-sitas-extensive-biometric-system/. [Accessed: 26-Nov-2020].

D. Pradika, “Implementasi Principal Component Analysis Untuk Mendeteksi Plat Nomor Kendaraan Dengan Otsu Thresholding (Implementation of Principal Component Analysis to Detect Vehicle Number Plates with Otsu Thresholding).†Universitas Pembangunan Nasional Veteran Yogyakarta, 2019.

M. E. Lubis, S. Tena, and S. O. Manu, “Implementasi Principal Component Analysis (PCA) Untuk Temu Kembali Citra Motif Kain Tenun NTT Berdasarkan Warna dan Tekstur (Implementation of Principal Component Analysis (PCA) for Retrieval of NTT Woven Fabric Motif Image Based on Color and Texture),†SAINSTEK, vol. 4, no. 1, pp. 317–323, 2019.

K. Alexanda, “Implementasi Algoritma Principal Component Analysis dan K-nearest Neighbor untuk Identifikasi Tanda Tangan (Implementation of Principal Component Analysis and K-nearest Neighbor Algorithms for Signature Identification).†Universitas Multimedia Nusantara, 2019.

M. A. Sidik, “Sistem Deteksi Kepribadian Berdasarkan Pola Tanda Tangan Menggunakan Metode Support Vector Machine Dan Principal Component Analysis (Personality Detection System Based on Signature Pattern Using Support Vector Machine Method and Principal Component Analys.†Universitas Komputer Indonesia, 2019.

M. O. H. AZMI, M. Fachrurrozi, and M. Kanda Januar, “Penerapan Metode PCA (Principal Component Analysis) Dan Euclidean Distance Untuk Pengenalan Wajah Berkelompok (Application of PCA (Principal Component Analysis) and Euclidean Distance Methods for Group Face Recognition).†Sriwijaya University, 2020.

F. Taris, “Implementasi Algoritma Convolutional Neural Networks dengan Metode PCA untuk Pengenalan Wajah 3 Dimensi.†Universitas Multimedia Nusantara, 2019.

D. E. Pratiwi and A. Harjoko, “Implementasi Pengenalan Wajah Menggunakan PCA (Principal Component Analysis),†IJEIS (Indonesian J. Electron. Instrum. Syst., vol. 3, no. 2, pp. 175–184, 2013.

K.-C. Lee, J. Ho, and D. J. Kriegman, “Acquiring linear subspaces for face recognition under variable lighting,†IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 5, pp. 684–698, 2005.

D. Supriadi and P. Novantara, “Implementasi Metode Multiscale Retinex Untuk Image Enhancement Menggunakan Delphi (Implementation of the Multiscale Retinex Method for Image Enhancement Using Delphi),†NUANSA Inform., vol. 10, no. 2, 2018.

A. B. Petro, C. Sbert, and J.-M. Morel, “Multiscale retinex,†Image Process. Line, pp. 71–88, 2014.

A. S. Parihar and K. Singh, “A study on Retinex based method for image enhancement,†in 2018 2nd International Conference on Inventive Systems and Control (ICISC), 2018, pp. 619–624.

R. RAJIH, R. Primartha, and K. J. Miraswan, “Perbaikan Kualitas Citra Digital Menggunakan Kombinasi Adaptive Multiscale Retinex Dengan Color Restoration (Digital Image Quality Improvement Using a Combination of Adaptive Multiscale Retinex and Color Restoration).†Sriwijaya University, 2019.

N. Q. Faraj and L. K. Abood, “Single Scale Retinex (SSR) and Multi Scale Retinex (MSR) Enhancement Algorithms for Thermal Night-Vision Images,†Iraqi J. Sci., pp. 2486–2495, 2017.

A. C. Sparavigna, “Night Image Enhancement by means of Retinex Filtering.†2020.

H. Liu, X. Sun, H. Han, and W. Cao, “Low-light video image enhancement based on multiscale retinex-like algorithm,†in 2016 Chinese Control and Decision Conference (CCDC), 2016, pp. 3712–3715.

A. Supriyanto, “Image Enhhancement Dengan Metode Median Filter Dan Multiscale Retinex With Color Restoration Pada Dataset Video.†Universitas Komputer Indonesia, 2018.

F. Matin, Y. Jeong, K. Kim, and K. Park, “Color image enhancement using multiscale Retinex based on particle swarm optimization method,†in Journal of Physics: Conference Series, 2018, vol. 960, no. 1.

H. Sadia, F. Azeem, H. Ullah, Z. Mahmood, S. Khattak, and G. Z. Khan, “Color Image Enhancement Using Multiscale Retinex with Guided Filter,†in 2018 International Conference on Frontiers of Information Technology (FIT), 2018, pp. 82–87.

S. Bao, S. Ma, and C. Yang, “Multi-scale retinex-based contrast enhancement method for preserving the naturalness of color image,†Opt. Rev., vol. 27, no. 6, pp. 475–485, 2020.

M. Xue, Y. Ji, Z. Yuyan, L. Weiwei, and Z. Jiugen, “Video image dehazing algorithm based on multi-scale retinex with color restoration,†in 2016 International Conference on Smart Grid and Electrical Automation (ICSGEA), 2016, pp. 195–200.

P. Pandey, P. Saurabh, B. Verma, and B. Tiwari, “A multi-scale retinex with color restoration (MSR-CR) technique for skin cancer detection,†in Soft Computing for Problem Solving, Springer, 2019, pp. 465–473.

H. Shi et al., “Logarithmic profile mapping multi-scale Retinex for restoration of low illumination images,†in Ninth International Conference on Graphic and Image Processing (ICGIP 2017), 2018, vol. 10615, p. 106152H.

S. Das, M. Roy, and S. Mukhopadhyay, “Correcting Low-Illumination Images Using Multi-Scale Fusion in a Pyramidal Framework,†in 2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), 2020, pp. 126–129.

D. J. Jobson, Z. Rahman, and G. A. Woodell, “A multiscale retinex for bridging the gap between color images and the human observation of scenes,†IEEE Trans. Image Process., vol. 6, no. 7, pp. 965–976, 1997.

C.-H. Lee, J.-L. Shih, C.-C. Lien, and C.-C. Han, “Adaptive multiscale retinex for image contrast enhancement,†in 2013 International Conference on Signal-Image Technology & Internet-Based Systems, 2013, pp. 43–50.

Downloads

Published

2020-12-08

Issue

Section

Article

Citation Check

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.