Implementation of Ant Colony Optimization – Artificial Neural Network in Predicting the Activity of Indenopyrazole Derivative as Anti-Cancer Agent
DOI:
https://doi.org/10.15575/join.v8i1.1055Keywords:
Ant colony optimization, Artificial neural network, Cancer, Indenopyrazole, Quantitative structure-activity relationshipsAbstract
References
“Tentang Kanker - Yayasan Kanker Indonesia.” https://yayasankankerindonesia.org/tentang-kanker (accessed Nov. 10, 2022).
“WHO: Kanker Membunuh Hampir 10 Juta Orang di Dunia Tahun Ini.” https://www.cnnindonesia.com/gaya-hidup/20180913133914-255-329910/who-kanker-membunuh-hampir-10-juta-orang-di-dunia-tahun-ini (accessed Nov. 10, 2022).
P. Nygren, “What is cancer chemotherapy?,” http://dx.doi.org/10.1080/02841860151116204, vol. 40, no. 2–3, pp. 166–174, 2009, doi: 10.1080/02841860151116204.
V. T. DeVita, T. S. Lawrence, and S. A. Rosenberg, DeVita, Hellman, and Rosenberg’s Cancer: Principles & Practice of Oncology, 8th ed., vol. 2. 2008.
S. K. Singh, N. Dessalew, and P. V. Bharatam, “3D-QSAR CoMFA study on indenopyrazole derivatives as cyclin dependent kinase 4 (CDK4) and cyclin dependent kinase 2 (CDK2) inhibitors,” Eur J Med Chem, vol. 41, no. 11, pp. 1310–1319, Nov. 2006, doi: 10.1016/J.EJMECH.2006.06.010.
M. J. Ahsan et al., “Discovery of novel antitubercular 3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide/carbothioamide analogues,” Bioorg Med Chem Lett, vol. 21, no. 18, pp. 5259–5261, Sep. 2011, doi: 10.1016/J.BMCL.2011.07.035.
T. L. Lemke, E. Abebe, P. F. Moore, and T. J. Carty, “Indeno[1,2-c]pyrazolone Acetic Acids as Semirigid Analogues of the Nonsteroidal Anti-inflammatory Drugs,” J Pharm Sci, vol. 78, no. 4, pp. 343–347, Apr. 1989, doi: 10.1002/JPS.2600780417.
Z. Yan et al., “N-glucuronidation of the platelet-derived growth factor receptor tyrosine kinase inhibitor 6,7-(dimethoxy-2,4-dihydroindeno[1,2-C]pyrazol-3-yl)-(3-fluoro-phenyl)-amine by human UDP-glucuronosyltransferases,” Drug Metab Dispos, vol. 34, no. 5, pp. 748–755, May 2006, doi: 10.1124/DMD.106.009274.
D. Kesuma, S. Siswandono, B. T. Purwanto, and S. Hardjono, “Uji in silico Aktivitas Sitotoksik dan Toksisitas Senyawa Turunan N-(Benzoil)-N’- feniltiourea Sebagai Calon Obat Antikanker,” JPSCR: Journal of Pharmaceutical Science and Clinical Research, vol. 3, no. 1, pp. 1–11, Mar. 2018, doi: 10.20961/JPSCR.V3I1.16266.
E. V. Y.D., M. Chasani, and M. Abdulghani, “Hubungan Kuantitatif Struktur-Aktivitas (HKSA) Antikanker Senyawa Turunan Kalanon dengan Metode Semi Empiris PM3 (Parameterized Model 3),” Molekul, vol. 7, no. 2, pp. 130–142, Nov. 2012, doi: 10.20884/1.JM.2012.7.2.115.
R. P. Verma, “Anti-cancer activities of 1,4-naphthoquinones: a QSAR study,” Anticancer Agents Med Chem, vol. 6, no. 5, pp. 489–499, Apr. 2006, doi: 10.2174/187152006778226512.
R. Y. Ikhsanurahman, N. Ikhsan, and I. Kurniawan, “Classification of CDK2 Inhibitor as Anti-Cancer Agent by Using Simulated Annealing-Support Vector Machine Methods,” 2022 International Conference on Data Science and Its Applications, ICoDSA 2022, pp. 82–86, 2022, doi: 10.1109/ICODSA55874.2022.9862929.
M. Fajar Rizqi, R. Rendian Septiawan, and I. Kurniawan, “Implementation of Simulated Annealing-Support Vector Machine on QSAR Study of Indenopyrazole Derivative as Anti-Cancer Agent,” 2021 9th International Conference on Information and Communication Technology, ICoICT 2021, pp. 662–668, Aug. 2021, doi: 10.1109/ICOICT52021.2021.9527416.
A. M. D. Mesleh, “Feature sub-set selection metrics for Arabic text classification,” Pattern Recognit Lett, vol. 32, no. 14, pp. 1922–1929, Oct. 2011, doi: 10.1016/J.PATREC.2011.07.010.
“Jaringan Saraf Tiruan (Artificial Neural Network) | Referensi Kesehatan.” https://creasoft.wordpress.com/2008/04/21/jaringan-saraf-tiruan-artificial-neural-network/ (accessed Nov. 10, 2022).
A. Early Febrinda et al., “Kapasitas Antioksidan dan Inhibitor Alfa Glukosidase Ekstrak Umbi Bawang Dayak [Antioxidant and Alpha-Glucosidase Inhibitory Properties of Bawang Dayak Bulb Extracts],” Jurnal Teknologi dan Industri Pangan, vol. 24, no. 2, pp. 161–161, Dec. 2013, doi: 10.6066/JTIP.2013.24.2.161.
W. Budiharto, Machine Learning & Computational Intelligence , 1st ed. C.V. Andi Offset, 2016.
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2023 Isman Kurniawan, Nabilla Kamil, Annisa Aditsania, Erwin Budi Setiawan

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License