Data Mining for Heart Disease Prediction Based on Echocardiogram and Electrocardiogram Data
DOI:
https://doi.org/10.15575/join.v8i1.1027Keywords:
Data mining, Echocardiogram, Electrocardiogram, Heart disease, Multi-layer perceptronAbstract
References
C.A. Hassan, J. Iqbal, R. Irfan, S. Hussain, A. D. Algarni, S.S.H. Bukhari, N. Alturki, and S.S. Ullah, “Effectively Predicting the Presence of Coronary Heart Disease Using Machine Learning Classifiers”, Sensors, Vol. 22, 7227, 2022, https://doi.org/10.3390/s22197227
Z. He, H. Zhang, X. Chen, J. Shi, L. Bai, Z. Fang, and R. Wang, “Hemorrhagic risk prediction in coronary artery disease patients based on photoplethysmography and machine learning,” Scientific Reports, 12:19190, 2022, https://doi.org/10.1038/s41598-022-22719-7
H.D. Masethe, and M.A. Masethe, “Prediction of Heart Disease using Classification Algorithms”, Proceedings of the World Congress on Engineering and Computer Science 2014, Vol II, 22-24 October, 2014
Anderies, J.A.R.W. Tchin, P.H. Putro, Y.P. Darmawan, A.A.S. Gunawan, “Prediction of Heart Disease UCI Dataset Using Machine Learning Algorithms”, Engineering, Mathematics and Computer Science, Vol.4, No.3, 2022, pp. 87-93, DOI: 10.21512/emacsjournal.v4i3.8683
Y. Muhammad, M. Tahir, M. Hayat, and K.T. Chong, “Early and accurate detection and diagnosis of heart disease using intelligent computational model”, Scientific Reports, 10:19747, 2020, https://doi.org/10.1038/s41598-020-76635-9
H. Jindal, S. Agrawal, R. Khera, R. Jain and P. Nagrath, “Heart disease prediction using machine learning algorithms”, IOP Conf. Series: Materials Science and Engineering 1022, pp. 1 - 10, 2021, doi:10.1088/1757-899X/1022/1/012072
B. Umadevi, and M. Snehapriya, “A Survey on Prediction of Heart Disease Using Data Mining Techniques”, International Journal of Science and Research (IJSR), Volume 6, Issue 4, pp. 2228 – 2232
S. Kodati, and R. Vivekanandam, “Analysis of Heart Disease using in Data Mining Tools Orange and Weka”, Global Journal of Computer Science and Technology, Volume XVIII, Issue I, Version I, pp. 17 - 21, 2018
S.H. Shadid, A.Shafkat, F. Yasmeen, S.A. Sibli, and M.R.Rafi, “Prediction of Heart Disease Using Data Mining Techniques: A Case Study”, International Journal of Research Publications, Volume: 41, Issue: 1, 2019, availabe at https://ijrp.org/paper-detail/826
B.Bahrami, and M.H. Shirvani, “Prediction and Diagnosis of Heart Disease by Data Mining Techniques”, Journal of Multidisciplinary Engineering Science and Technology (JMEST), Vol. 2, Issue 2, pp. 164 - 168, 2015
O.Yu. Atkov, S.G. Gorokhova, A.G. Sboev, E.V. Generozov, E.V. Muraseyeva, S.Y. Moroshkina, N.N. Cherniy, “Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters”, Journal of Cardiology, 59, pp. 190—194, 2012, doi:10.1016/j.jjcc.2011.11.005
R. Chitra, and V. Seenivasagam, “Review of Heart Disease Prediction System Using Data Mining And Hybrid Intelligent Techniques”, ICTACT Journal on Soft Computing, Vol. 3, No. 4, pp. 605 – 609, 2013, DOI : 10.21917/ijsc.2013.0086
Taneja, “Heart disease Prediction System Using data Mining Techniques”, Oriental Journal of Computer Science & Technology, Vol. 6, No. (4): Pp. 457-466, 2013
C.S. Dangare, and S.S. Apte, “Improved Study of Heart Disease Prediction System using Data Mining Classification Techniques”, International Journal of Computer Applications, Vol. 47, No.10, 2012
A.K. Pandey, P. Pandey, K.L. Jaiswal, A.K. Sen, “A Heart Disease Prediction Model using Decision Tree”, IOSR Journal of Computer Engineering (IOSR-JCE), Vol. 12, No. 6,pp. 83-86, 2013
S. Goto, K. Mahara, L. Beussink-Nelson, H. Ikura, Y. Katsumata, J. Endo, H. K. Gaggin, S. J. Shah, Y. Itabashi, C. A. MacRae, and R. C. Deo, “Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms”, NATURE COMMUNICATIONS | (2021) 12:2726, pp. 1-12, 2021, https://doi.org/10.1038/s41467-021-22877-8
Akansha Jain, Manish Ahirwar, Rajeev Pandey, “A Review on Intutive Prediction of Heart Disease Using Data Mining Techniques”, International Journal of Computer Sciences and Engineering, 2019, ff10.26438/ijcse/v7i7.109113
Thamizhiniyal, and A. Vidhya, “Intelligent Risk Analysis and Prediction of Heart Disease Using Data Mining Techniques”, Journal of Information and Computational Science, Vol. 10, No. 3, pp. 175 - 180, 2020
R. Fadnavis, K. Dhore, D. Gupta, J. Waghmare, and D. Kosankar, “Heart disease prediction using data mining”, Journal of Physics: Conference Series 1913, 012099, 2021, doi:10.1088/1742-6596/1913/1/012099
P. Singh, S. Singh, and G.S. Pandi-Jain, “Effective heart disease prediction system using data mining techniques”, International Journal of Nanomedicine, Vol. 13, pp. 121 - 124, 2018
S.Y. Cho, S.H. Kim, S.H. Kang, K.J. Lee, D. Choi, S. Kang, S.J. Park, T.Kim, C.H. Yoon, T.J. Youn, and I.C. Chae, “Pre?existing and machine learning?based models for cardiovascular risk prediction”, Scientific Reports, 11:8886, 2021, https://doi.org/10.1038/s41598-021-88257-w
C. Krittanawong, H.U.H. Virk, S. Bangalore, Z. Wang, K.W. Johnson, R. Pinotti, H. Zhang, S. Kaplin, B. Narasimhan, T. Kitai, U. Baber, J.L.Halperin and W.H.W. Tang, “Machine learning prediction in cardiovascular diseases: a meta?analysis”, Scientific ReportS, 10:16057, 2020, https://doi.org/10.1038/s41598-020-72685-1
R. Alizadehsani, M. Roshanzamir, M. Abdar, A. Beykikhoshk, A. Khosravi, M. Panahiazar, A. Koohestani, F. Khozeimeh, S. Nahavandi, and N. Sarrafzadegan, “A Database For Using Machine Learning and Data Mining Techniques for Coronary Artery Disease Diagnosis”, Scientific Data | (2019) 6:227, pp. 1 -13, 2019, https://doi.org/10.1038/s41597-019-0206-3
C. Balakrishnan, and V.D.A. Kumar, IoT-Enabled Classification of Echocardiogram Images for Cardiovascular Disease Risk Prediction with Pre-Trained Recurrent Convolutional Neural Networks, Diagnostics 2023, 13, 775. https://doi.org/10.3390/ diagnostics13040775
R. Nedadur, B. Wang, and W. Tsang, Artificial intelligence for the echocardiographic assessment of valvular heart disease Heart 2022;108:1592-1599.
N. Kumar, and D. Kumar, Machine Learning based Heart Disease Diagnosis using Non- Invasive Methods: A Review, Journal of Physics: Conference Series 1950, ICMAI 2021, pp. 1 - 14, doi:10.1088/1742-6596/1950/1/012081
M. B. Abubaker and B. Babayi?it, "Detection of Cardiovascular Diseases in ECG Images Using Machine Learning and Deep Learning Methods," in IEEE Transactions on Artificial Intelligence, vol. 4, no. 2, pp. 373-382, April 2023, doi: 10.1109/TAI.2022.3159505.
T. Dhamdhere, S. Bhutambere, A. Bansode, and S. Umare, Heart Disease Detection Using ECG Waves: A Survey, Journal of Emerging Technologies and Innovative Research (JETIR), Vol. 7, Issue 4, pp. 1761 - 1764
A. S. . Sharma and D. H. . Hota, “ECG Analysis-Based Cardiac Disease Prediction Using Signal Feature Selection with Extraction Based on AI Techniques”, Int. j. commun. netw. inf. secur., vol. 14, no. 3, pp. 73–85, Dec. 2022.
M.H. Vafaie, M. Ataei, and H.R. Koofigar, Heart diseases prediction based on ECG signals’ classi?cation using agenetic-fuzzy system and dynamical model of ECG signals, Biomedical Signal Processing and Control 14, 2014, pp. 291–296
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2023 Tb Ai Munandar
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License