Improving Indonesian Named Entity Recognition for Domain Zakat Using Conditional Random Fields

Authors

  • Nur Febriana Widiyanti Department of Informatics, UIN Syarif Hidayatullah Jakarta, Indonesia, Indonesia
  • Husni Teja Sukmana Department of Informatics, UIN Syarif Hidayatullah Jakarta, Indonesia, Indonesia
  • Khodijah Hulliyah Department of Informatics, UIN Syarif Hidayatullah Jakarta, Indonesia, Indonesia
  • Dewi Khairani Department of Informatics, UIN Syarif Hidayatullah Jakarta, Indonesia, Indonesia
  • Lee Kyung Oh Department of Computer Engineering, Sun Moon University, Korea, Republic of

DOI:

https://doi.org/10.15575/join.v8i2.898

Keywords:

Named Entity Recognition, Conditional Random Fields, Natural Language Processing, Charity, Zakat

Abstract

In Indonesia, where the majority of the population is Muslim, one of the obligations of a Muslim is zakat. To reduce illiteracy about zakat among Muslims, they need to have access to basic information about it. In order to facilitate the acquisition of this information, this study utilized named entity recognition (NER) and defined 12 named entity classes for the zakat domain, including the pillars of Islam, various types of zakat, and zakat management institutions. The Conditional Random Fields method was used for testing Indonesian-NER in three scenarios. In the specific context of the Zakat domain, NER can extract information about organizations, individuals, and locations involved in collecting and distributing Zakat funds. This information can improve the Zakat system’s efficiency and transparency and support research and analysis on Zakat-related topics. The average performance evaluation of the Indonesian-NER model showed a precision of 0.902, recall of 0.834, and an F1-score of 0.867.

Author Biographies

Nur Febriana Widiyanti, Department of Informatics, UIN Syarif Hidayatullah Jakarta, Indonesia

Scopus ID :23398706200

Fakultas Sains dan Teknologi
UIN Sunan Gunung Djati Bandung

Husni Teja Sukmana, Department of Informatics, UIN Syarif Hidayatullah Jakarta, Indonesia

References

D. S. Rachmad, “Review Named Entity Recognition dengan Menggunakan Machine Learning,” J. Sains dan Inform., vol. 6, no. 1, pp. 28–33, 2020, doi: 10.34128/jsi.v6i1.204.

H. L. Chieu and H. T. Ng, “Named entity recognition with a maximum entropy approach,” pp. 160–163, 2003, doi: 10.3115/1119176.1119199.

G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer, “Neural Architectures for Named Entity Recognition,” Proc. 2016 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol., pp. 260–270, 2016, doi: 10.18653/v1/N16-1030.

H. T. Sukmana, J. M. Muslimin, A. F. Firmansyah, and L. K. Oh, “Building the Knowledge Graph for Zakat (KGZ) in Indonesian Language,” ASM Sci. J., vol. 16, pp. 1–10, 2021, doi: 10.32802/asmscj.2021.758.

D. Khairani, D. A. Bangkit, N. F. Rozi, S. U. Masruroh, S. Oktaviana, and T. Rosyadi, “Named-Entity Recognition and Optical Character Recognition for Detecting Halal Food Ingredients: Indonesian Case Study,” pp. 01–05, Nov. 2022, doi: 10.1109/CITSM56380.2022.9935966.

Y. Wibisono and M. L. Khodra, “Pengenalan Entitas Bernama Otomatis untuk Bahasa Indonesia dengan Pendekatan Pembelajaran Mesin,” 2018, doi: 10.31227/osf.io/vud2p.

S. Morwal, “Named Entity Recognition using Hidden Markov Model (HMM),” Int. J. Nat. Lang. Comput., 2012, doi: 10.5121/ijnlc.2012.1402.

G. Paliouras, V. Karkaletsis, G. Petasis, and C. D. Spyropoulos, “Learning Decision Trees for Named-Entity Recognition and Classification,” in ECAI Workshop on Machine Learning for Information Extraction, 2000.

F. Riaz, M. W. Anwar, and H. Muqades, “Maximum Entropy based Urdu Named Entity Recognition,” 2020, doi: 10.1109/ICEET48479.2020.9048203.

A. D. Putra and A. S. Girsang, “Analysis of named-entity effect on text classification of traffic accident data using machine learning,” Indones. J. Electr. Eng. Comput. Sci., 2022, doi: 10.11591/ijeecs.v25.i3.pp1672-1678.

S. Song, N. Zhang, and H. Huang, “Named entity recognition based on conditional random fields,” Cluster Comput., 2019, doi: 10.1007/s10586-017-1146-3.

A. S. Wibawa and A. Purwarianti, “Indonesian Named-entity Recognition for 15 Classes Using Ensemble Supervised Learning,” Procedia Comput. Sci., vol. 81, no. May, pp. 221–228, 2016, doi: 10.1016/j.procs.2016.04.053.

J. Li, A. Sun, J. Han, and C. Li, “A Survey on Deep Learning for Named Entity Recognition,” IEEE Trans. Knowl. Data Eng., pp. 1–1, 2020, doi: 10.1109/tkde.2020.2981314.

B. Aryoyudanta, T. B. Adji, and I. Hidayah, “Semi-supervised learning approach for Indonesian Named Entity Recognition (NER) using co-training algorithm,” Proceeding - 2016 Int. Semin. Intell. Technol. Its Appl. ISITIA 2016 Recent Trends Intell. Comput. Technol. Sustain. Energy, pp. 7–12, 2017, doi: 10.1109/ISITIA.2016.7828624.

W. Gunawan, D. Suhartono, F. Purnomo, and A. Ongko, “Named-Entity Recognition for Indonesian Language using Bidirectional LSTM-CNNs,” Procedia Comput. Sci., vol. 135, pp. 425–432, 2018, doi: 10.1016/j.procs.2018.08.193.

U. Wahyudin, “Sosialisasi Zakat untuk Menciptakan Kesadaran Berzakat Umat Islam,” J. Masy. Dan Filantr. Islam, vol. 1, no. 1, pp. 17–20, 2018.

D. D. A. Yani, H. S. Pratiwi, and H. Muhardi, “Implementasi Web Scraping untuk Pengambilan Data pada Situs Marketplace,” J. Sist. dan Teknol. Inf., vol. 7, no. 4, p. 257, 2019, doi: 10.26418/justin.v7i4.30930.

D. A. A. D. K. Siti Ummi Masruroh, “Penerapan Algoritma Paice atau Husk untuk Stemming pada Kamus Bahasa Inggris ke Bahasa Indonesia,” J. Tek. Inform., 2013, doi: 10.15408/jti.v6i2.2031.

M. Irfan and A. F. Hidayatullah, “Tinjauan Literatur Named Entity Recognition dengan Machine Learning dan Deep Learning pada Ulasan Wisata,” 2019.

Rabi Narayan Behera, “A Survey on Machine Learning: Concept, Algorithms and Applications,” Int. J. Innov. Res. Comput. Commun. Eng., vol. 5, no. 2, pp. 8198–8205, 2017.

M. Batta, “Machine Learning Algorithms - A Review,” Int. J. Sci. Res. (IJ, vol. 9, no. 1, pp. 381–386, 2020, doi: 10.21275/ART20203995.

Downloads

Published

2023-12-28

Issue

Section

Article

Citation Check

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.