Implementation of Fuzzy C-Means for Clustering the Majelis Ulama Indonesia (MUI) Fatwa Documents

Authors

  • Fajar Rohman Hariri Department of Informatics, UIN Maulana Malik Ibrahim Malang, Indonesia

DOI:

https://doi.org/10.15575/join.v6i1.591

Keywords:

Fatwa, Clustering, Fuzzy C-Means

Abstract

Since the Indonesian Ulema Council (MUI) was established in 1975 until now, this institution has produced 201 edicts covering various fields. Text mining is one of the techniques used to collect data hidden from data that form text. One method of extracting text is Clustering. The present study implements the Fuzzy C-Means Clustering method in MUI fatwa documents to classify existing fatwas based on the similarity of the issues discussed. Silhouette Coefficient is used to analyze the resulting clusters, with the best value of 0.0982 with 10 clusters grouping. Classify fatwas based on the similarity of the issues discussed can make it easier and faster in the search for an Islamic law in Indonesia.

References

M. Allahyari, E. D. Trippe, and J. B. Gutierrez, “A Brief Survey of Text Mining : Classification , Clustering and Extraction Techniques,†2017.

W. B. Zulfikar, M. Irfan, C. N. Alam, and M. Indra, “The comparation of text mining with Naive Bayes classifier, nearest neighbor, and decision tree to detect Indonesian swear words on Twitter,†5th Int. Conf. Cyber IT Serv. Manag., vol. pp. 1-5, d, 2017.

D. S. Maylawati and G. A. P. Saptawati, “Set of Frequent Word Item sets as Feature Representation for Text with Indonesian Slang,†Int. Conf. Comput. Appl. Informatics 2016, 2017, doi: 10.1088/1742-6596/755/1/011001.

M. I. N. Saputra, D. Fauzy, R. A. Hakim, P. Dauni, M. D. Firdaus, and I. Taufik, “Implementation of Fuzzy C-Means algorithm to classifying research topics in informatics department, UIN Sunan Gunung,†J. Phys. Conf. Ser., vol. 1402, no. 2, 2019, doi: 10.1088/1742-6596/1402/2/022091.

B. Santosa, Data mining teknik pemanfaatan data untuk keperluan bisnis. Yogyakarta: Graha Ilmu, 2007.

and N. I. G. O. M. E. Zein, L. M. E. Bakrawy, “A robust 3D mesh watermarking algorithm utilizing fuzzy CMeans clustering,†Futur. Comput. Informatics, vol. 2, pp. 148–156, 2017.

N. P. and M. P. J. Iran, “Clustering Techniques and the Similarity used in Clustering: A survey,†Int. J. Comput. Appl., vol. 134, no. 7, 2016.

C. Slamet, “Clustering the Verses of the Holy Qur’an using K-Means Algorithm,†Asian J. Inf. Technol., vol. 15, no. 24, 2016.

D. D. C. Nugraha, “Klasterisasi Judul Buku dengan Menggunakan Metode K – Means,†Semin. Nas. Apl. Teknol. Inf., 2014.

E. Yulian, “Text Mining dengan K-Means Clustering pada Tema LGBT dalam Arsip Tweet Masyarakat Kota Bandung,†J. Mat. “MANTIK,†vol. 4, no. 1, 2018.

L. Agusta, U. Kristen, and S. Wacana, “Perbandingan Algoritma Stemming Porter Dengan Algoritma Nazief & Adriani Untuk Stemming Dokumen Teks Bahasa Indonesia,†pp. 196–201, 2009.

J. C. Dun, “A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters,†J. Cybernet, vol. 3, no. 3, pp. 32–57, 1973.

J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms. USA: Kluwer Academic Publishers Norwell, 1981.

E. T. Luthfi, “FUZZY C-MEANS UNTUK CLUSTERING DATA ( STUDI KASUS : DATA PERFORMANCE MENGAJAR DOSEN ),†vol. 2007, no. November, pp. 1–7, 2007.

S. Kusumadewi and H. Purnomo, Aplikasi Logika Fuzzy untuk pendukung keputusan. Yogyakarta: Graha Ilmu, 2010.

M. Zhang, L., & Luo, iverse fuzzy c-means for image clustering. Pattern Recognition Letters, 1st ed. 2018.

L. Zhang, M. Luo, J. Liu, Z. Li, and Q. Zheng, “Diverse Fuzzy c -Means for Image Clustering,†Pattern Recognit. Lett., 2018.

J. Stetco, A., Zeng, X., & Keane, “Expert Systems with Applications Fuzzy C-means ++ : Fuzzy C-means with effective seeding initialization,†Expert Syst. Appl., pp. 7541–7548, 2015.

Muhardi and Nisar, “PENENTUAN PENERIMA BEASISWA DENGAN ALGORITMA FUZZY C-MEANS DI UNIVERSITAS MEGOW PAK TULANG BAWANG,†J. TIM Darmajaya, vol. 01, no. 02, pp. 158–174, 2015.

J. O. Yang, Y., Pedersen, “Comparative Study on Feature Selection in Text Categorization,†Proc. Fourteenth Int. Conf. Mach. Learn., 1997.

H. Toyota, T., Nobuhara, “Visualization of the Internet News Based on Efficient Self-Organizing Map Using Restricted Region Search and Dimensionality Reduction,†J. Adv. Comput. Intell. Intell. Informatics, vol. 6, 2012.

M. Jujjuri, Ramadevi & Rao, “Evaluation of enhanced subspace clustering validity using silhouette coefficient internal measure,†J. Adv. Res. Dyn. Control Syst., pp. 321–328, 2019.

Downloads

Published

2021-06-17

Issue

Section

Article

Citation Check

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.