Random Forest-Based Classification of Greywater Filtration Media for Intelligent Biofiltration Systems

Authors

DOI:

https://doi.org/10.15575/join.v10i2.1623

Keywords:

Biofiltration, Classification Model, Greywater, Machine Learning, Random Forest

Abstract

The increasing volume of domestic wastewater, particularly greywater, has raised the demand for intelligent and adaptive treatment systems to support efficient water reuse. This study aims to develop a classification model for filtration media types (physical, chemical, and biological) based on water quality data using the Random Forest algorithm. Initial labeling was conducted using the K-Means Clustering method on a publicly available dataset simulated as greywater, based on ten key water quality parameters relevant to irrigation and environmental standards. Model evaluation demonstrated excellent classification performance, with a macro F1-score reaching 0.97 and consistent results in both 5-fold and 10-fold cross-validation. These findings indicate that the proposed model can be integrated into an IoT-based biofiltration system as an automated classification logic to support adaptive, efficient, and reusable household wastewater treatment in the context of irrigation.

References

[1] M. Strokal et al., “Urbanization: an increasing source of multiple pollutants to rivers in the 21st century,” npj Urban Sustainability, vol. 1, no. 1, 2021, doi: 10.1038/s42949-021-00026-w.

[2] A. Mahmoudi, S. A. Mousavi, and P. Darvishi, “Greywater as a sustainable source for development of green roofs: Characteristics, treatment technologies, reuse, case studies and future developments,” J Environ Manage, vol. 295, no. June, p. 112991, 2021, doi: 10.1016/j.jenvman.2021.112991.

[3] O. M. Ikumapayi, O. T. Laseinde, and E. T. Akinlabi, “An overview of sustainable greywater treatment processes,” E3S Web of Conferences, vol. 552, pp. 1–16, 2024, doi: 10.1051/e3sconf/202455201047.

[4] I. I. S. Shamsuddin, Z. Othman, and N. S. Sani, “Water Quality Index Classification Based on Machine Learning: A Case from the Langat River Basin Model,” Water (Switzerland), vol. 14, no. 19, 2022, doi: 10.3390/w14192939.

[5] V. Kukartsev, V. Orlov, E. Semenova, and A. Rozhkova, “Optimizing water quality classification using random forest and machine learning,” BIO Web Conf, vol. 130, pp. 1–10, 2024, doi: 10.1051/bioconf/202413003007.

[6] S. Y. Abuzir and Y. S. Abuzir, “Machine learning for water quality classification,” Water Quality Research Journal, vol. 57, no. 3, pp. 152–164, 2022, doi: 10.2166/wqrj.2022.004.

[7] H. Sujadi, Nunu Nurdiana, and Reyna Indra Maulana, “Pengembangan Sistem Smart Village Berbasis Internet of Things untuk Meningkatkan Kualitas Hidup di Desa,” Journal of Applied Computer Science and Technology, vol. 4, no. 2, pp. 141–146, 2023, doi: 10.52158/jacost.v4i2.474.

[8] S. V. S. Ganga Devi, “Random forest advice for water quality prediction in the regions of Kadapa District,” International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 6 Special Issue 4, pp. 1464–1466, 2019, doi: 10.35940/ijitee.F1298.0486S419.

[9] N. Maulidah, M. Maulidah, R. Supriyadi, H. Nalatissifa, S. Diantika, and A. Fauzi, “Prediksi Kualitas Air Menggunakan Metode Random Forest, Decision Tree, Dan Gradient Boosting,” Jurnal Khatulistiwa Informatika, vol. 12, no. 1, pp. 1–6, 2024, doi: 10.31294/jki.v12i1.16004.

[10] K. Abdi, A. Warjaya, I. Muthmainnah, and P. H. Pahutar, “Penerapan Algoritma Random Forest dalam Prediksi Kelayakan Air Minum,” Jurnal Ilmu Komputer dan Informatika, vol. 3, no. 2, pp. 81–88, 2024, doi: 10.54082/jiki.81.

[11] D. Hartanti and A. I. Pradana, “Komparasi Algoritma Machine Learning dalam Identifikasi Kualitas Air,” SMARTICS Journal, vol. 9, no. 1, pp. 1–6, 2023, [Online]. Available: https://doi.org/10.21067/smartics.v9i1.8113

[12] N. H. A. Malek, W. F. W. Yaacob, S. A. M. Nasir, and N. Shaadan, “Prediction of Water Quality Classification of the Kelantan River Basin, Malaysia, Using Machine Learning Techniques,” Water (Switzerland), vol. 14, no. 7, 2022, doi: 10.3390/w14071067.

[13] X. Xu, T. Lai, S. Jahan, F. Farid, and A. Bello, “A Machine Learning Predictive Model to Detect Water Quality and Pollution,” Future Internet, vol. 14, no. 11, pp. 1–14, 2022, doi: 10.3390/fi14110324.

[14] T. Veeramsetty, Venkataramana; Arabelli, Rajeshwarrao; Bernatin, “Aquaculture - Water Quality Dataset,” 2024. doi: 10.17632/y78ty2g293.1.

[15] K. L. H. dan K. R. Indonesia, Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia Nomor P.68/Menlhk-Setjen/2016 tentang Baku Mutu Air Limbah Domestik. Indonesia, 2016.

[16] K. K. R. Indonesia, Peraturan Menteri Kesehatan Republik Indonesia Nomor 2 Tahun 2023 tentang Standar Kegiatan Usaha dan/atau Produk pada Penyelenggaraan Perizinan Berusaha Berbasis Risiko Sektor Kesehatan, no. 55. Indonesia: Kementerian Kesehatan Republik Indonesia, 2023.

[17] World Health Organization (WHO), WHO Guidelines for the Safe Use of Wastewater, Excreta and Greywater: Volume 2 – Wastewater Use in Agriculture, Third Edit. Geneva: World Health Organization (WHO), 2006.

[18] Menteri Kesehatan Republik Indonesia, Peraturan Menteri Kesehatan Republik Indonesia Nomor 32 Tahun 2017 Tentang Standar Baku Mutu Kesehatan Lingkungan Dan Persyaratan Kesehatan Air Untuk Keperluan Higiene Sanitasi, Kolam Renang, Solus Per Aqua dan Pemandian Umum. Indonesia: Kementerian Kesehatan Republik Indonesia, 2017, pp. 1–20. [Online]. Available: https://peraturan.bpk.go.id/Home/Details/112721/permenkes-no-32-tahun-2017

[19] R. Khare, A. A. Khurshid, A. Jain, and S. Shukla, “Predictive Sensor for Biological Oxygen Demand in water using Active Learning based Random Forest Algorithm,” NeuroQuantology, vol. 20, no. 9, pp. 1983–1988, 2022, doi: 10.48047/nq.2022.20.9.nq44230.

[20] V. Kothari, S. Vij, S. K. Sharma, and N. Gupta, “Correlation of various water quality parameters and water quality index of districts of Uttarakhand,” Environmental and Sustainability Indicators, vol. 9, no. December 2020, p. 100093, 2021, doi: 10.1016/j.indic.2020.100093.

[21] A. K. Shrestha and N. Basnet, “The Correlation and Regression Analysis of Physicochemical Parameters of River Water for the Evaluation of Percentage Contribution to Electrical Conductivity,” J Chem, vol. 2018, 2018, doi: 10.1155/2018/8369613.

[22] A. Maulizar, M. Masykur, and J. Supardi, “ANALISIS pH, TDS, TOTAL HARDNESS, ALKALINITY, DAN SILICA PADA BOILER FEET WATER DI PT. SOCFINDO PERKEBUNAN KELAPA SAWIT DI SEUNAGAN,” Jurnal Mekanova: Mekanikal, Inovasi dan Teknologi, vol. 8, no. 1, p. 129, 2022, doi: 10.35308/jmkn.v8i1.5630.

[23] K. Khofifah and M. Utami, “Analysis of total dissolved solid (TDS) and total suspended solid (TSS) levels in liquid waste from sugar cane industry,” Indonesian Journal of Chemical Research, vol. 7, no. 1, pp. 43–49, 2022.

[24] M. I. Mashur and Y. Salim, “Analisis Performa Metode Cluster K-Means pada Dataset Ocular Disease Recognition,” Indonesian Journal of Data and Science, vol. 3, no. 1, pp. 35–46, 2022, doi: 10.56705/ijodas.v3i1.47.

[25] H. Zou, Z. Zou, and X. Wang, “An enhanced K-Means algorithm for water quality analysis of the haihe river in China,” Int J Environ Res Public Health, vol. 12, no. 11, pp. 14400–14413, 2015, doi: 10.3390/ijerph121114400.

[26] A. E. M. Celestino, D. A. M. Cruz, E. M. O. Sánchez, F. G. Reyes, and D. V. Soto, “Groundwater quality assessment: An improved approach to K-means clustering, principal component analysis and spatial analysis: A case study,” Water (Switzerland), vol. 10, no. 4, pp. 1–21, 2018, doi: 10.3390/w10040437.

[27] M. A. R. Hamed, “Application of surface water quality classification models using principal components analysis and cluster analysis,” Water and Energy International, vol. 62r, no. 1, pp. 54–62, 2019, doi: 10.4236/gep.2019.76003.

[28] N. Laili, N. S. Indrasti, and D. Wahyudi, “Design of sustainable coffee processing wastewater treatment system using K-means clustering algorithm,” IOP Conf Ser Earth Environ Sci, vol. 1063, no. 1, 2022, doi: 10.1088/1755-1315/1063/1/012032.

[29] K. Kaur, K. Singh, S. K. Gupta, and A. K. Tiwary, “Prediction of water quality and LULC analysis using machine learning and geospatial techniques,” Water Pract Technol, vol. 20, no. 1, pp. 275–294, 2025, doi: 10.2166/wpt.2024.310.

[30] P. S. Varma and V. Anand, “Random Forest Learning Based Indoor Localization as an IoT Service for Smart Buildings,” Wirel Pers Commun, vol. 117, no. 4, pp. 3209–3227, 2021, doi: 10.1007/s11277-020-07977-w.

[31] R. Tyasnurita and S. W. Hapsari, “Identification of Chronic Kidney Disease Using Naive Bayes, Adaboost, and Random Forest Learning Methods,” JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), vol. 6, no. 1, pp. 115–120, 2020, doi: 10.33480/jitk.v6i1.1403.

[32] V. R. Danestiara and N. N. Azkiya, “PREDICTION OF INHIBITOR BINDING AFFINITY AND MOLECULAR INTERACTIONS IN MPRO DENGUE USING MACHINE LEARNING,” vol. 10, no. 3, pp. 461–468, 2025, doi: 10.33480/jitk.v10i3.5994.PREDICTION.

[33] K. N. Khikmah, B. Sartono, B. Susetyo, and G. A. Dito, “Performance Comparative Study of Machine Learning Classification Algorithms for Food Insecurity Experience by Households in West Java,” Jurnal Online Informatika, vol. 9, no. 1, pp. 128–137, 2024, doi: 10.15575/join.v9i1.1012.

[34] J. Asian, M. Dholah Rosita, and T. Mantoro, “Sentiment Analysis for the Brazilian Anesthesiologist Using Multi-Layer Perceptron Classifier and Random Forest Methods,” Jurnal Online Informatika, vol. 7, no. 1, p. 132, 2022, doi: 10.15575/join.v7i1.900.

[35] S. M. Alomani, N. I. Alhawiti, and A. Alhakamy, “Prediction of Quality of Water According to a Random Forest Classifier,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 6, pp. 892–899, 2022, doi: 10.14569/IJACSA.2022.01306105.

Downloads

Published

2025-11-08

Issue

Section

Article

Citation Check

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.