Enhancing Remote Sensing Image Quality through Data Fusion and Synthetic Aperture Radar (SAR): A Comparative Analysis of CNN, Lightweight ConvNet, and VGG16 Models
DOI:
https://doi.org/10.15575/join.v9i2.1321Keywords:
Data Fusion, Image Classification, Synthetic Aperture Radar (SAR)Abstract
References
[1] G. Xu, X. Jiang, and X. Liu, “Color-Aware Self-Supervised Learning for Scene Classification and Segmentation of Remote Sensing Images,” IGARSS 2023 - 2023 IEEE Int. Geosci. Remote Sens. Symp., pp. 5049–5052, 2023, doi: 10.1109/igarss52108.2023.10283098.
[2] Y. Wan, Y. Zhong, A. Ma, J. J. Wang, and R. Feng, “RSSM-Net: Remote Sensing Image Scene Classification Based on Multi-Objective Neural Architecture Search,” Int. Geosci. Remote Sens. Symp., pp. 1369–1372, 2020, doi: 10.1109/IGARSS39084.2020.9323429.
[3] Y. Xu, W. Guo, Z. Zhang, and W. Yu, “Multiple Embeddings Contrastive Pretraining for Remote Sensing Image Classification,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022, doi: 10.1109/LGRS.2022.3185729.
[4] J. W. Ross, M. L. Raymer, B. D. Rigling, and V. J. Velten, “Template Matching Study on Synthetic Aperture RADAR and Synthetic Aperture LADAR Imagery,” 2022 IEEE Res. Appl. Photonics Def. Conf. RAPID 2022 - Proc., pp. 1–2, 2022, doi: 10.1109/RAPID54472.2022.9911590.
[5] Q. Zhu, X. Sun, Y. Zhong, and L. Zhang, “HIGH-RESOLUTION REMOTE SENSING IMAGE SCENE UNDERSTANDING : A REVIEW Qiqi Zhu , Xiongli Sun , Yanfei Zhong *, and Liangpei Zhang , State Key Laboratory of Information Engineering in Surveying , Mapping , and Remote Sensing , Wuhan * Corresponding author E-,” IGARSS 2019 - 2019 IEEE Int. Geosci. Remote Sens. Symp., pp. 3061–3064, 2019.
[6] Y. Long, G. S. Xia, W. Yang, L. Zhang, and D. Li, “Toward Dataset Construction for Remote Sensing Image Interpretation,” Int. Geosci. Remote Sens. Symp., no. 61922065, pp. 1210–1213, 2021, doi: 10.1109/IGARSS47720.2021.9554321.
[7] A. Shakya, M. Biswas, and M. Pal, “CNN-based fusion and classification of SAR and Optical data,” Int. J. Remote Sens., vol. 41, no. 22, pp. 8839–8861, 2020, doi: 10.1080/01431161.2020.1783713.
[8] Y. Li, Q. Wang, X. Liang, and L. Jiao, “A NOVEL DEEP FEATURE FUSION NETWORK FOR REMOTE SENSING SCENE Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education , International Research Center for Intelligent Perception and Computation , Joint International Researc,” IGARSS 2019 - 2019 IEEE Int. Geosci. Remote Sens. Symp., pp. 5484–5487, 2019.
[9] H. Wang, Y. Miao, H. Wang, and B. Zhang, “Convolutional Attention in Ensemble with Knowledge Transferred for Remote Sensing Image Classification,” IEEE Geosci. Remote Sens. Lett., vol. 16, no. 4, pp. 643–647, 2019, doi: 10.1109/LGRS.2018.2878350.
[10] F. Fauziyah, Z. Wang, and G. Joy, “Knowledge Management Strategy for Handling Cyber Attacks in E-Commerce with Computer Security Incident Response Team (CSIRT),” J. Inf. Secur., vol. 13, no. 04, pp. 294–311, 2022, doi: 10.4236/jis.2022.134016.
[11] J. Gabriel, A. Mayzira, J. Aditya, M. Itsari, S. Satrio, and Y. Ruldeviyani, “Critical Success Factors of Data Integration on Digital Human Capital Information System to Support Digital Transformation - A Case Study at PTXYZ,” 2020 8th Int. Conf. Cyber IT Serv. Manag. CITSM 2020, 2020, doi: 10.1109/CITSM50537.2020.9268793.
[12] A. Ma, N. Yu, Z. Zheng, Y. Zhong, and L. Zhang, “A Supervised Progressive Growing Generative Adversarial Network for Remote Sensing Image Scene Classification,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–18, 2022, doi: 10.1109/TGRS.2022.3151405.
[13] Y. Heryadi and E. Miranda, Land cover classification based on sentinel-2 satellite imagery using convolutional neural network model: A case study in Semarang Area, Indonesia, vol. 830, no. January. Springer International Publishing, 2020. doi: 10.1007/978-3-030-14132-5_15.
[14] A. Fikri and A. Murni, “New Generation Indonesian Endemic Cattle Classification : MobileNetV2 and ResNet50,” vol. 9, no. 4, pp. 941–950, 2023, doi: 10.26555/jiteki.v9i4.26659.
[15] A. K. Nugroho, D. M. K. Nugraheni, T. A. Putranto, I. K. E. Purnama, and M. H. Purnomo, “Classification of Ischemic Stroke with Convolutional Neural Network (CNN) approach on b-1000 Diffusion-Weighted (DW) MRI,” Emit. Int. J. Eng. Technol., vol. 10, no. 1, pp. 195–216, 2022, doi: 10.24003/emitter.v10i1.694.
[16] A. K. Nugroho, T. A. Putranto, I. K. E. Purnama, and M. H. Purnomo, “Quad Convolutional Layers (QCL) CNN Approach for Classification of Brain Stroke in Diffusion Weighted (DW) - Magnetic Resonance Images (MRI),” Int. J. Intell. Eng. Syst., vol. 15, no. 1, pp. 414–427, 2022, doi: 10.22266/IJIES2022.0228.38.
[17] A. Sebastianelli, M. P. Del Rosso, P. P. Mathieu, and S. L. Ullo, “Paradigm selection for Data Fusion of SAR and Multispectral Sentinel data applied to Land-Cover Classification,” pp. 1–5, 2021, [Online]. Available: http://arxiv.org/abs/2106.11056
[18] D. F. S. Santos, R. G. Pires, L. A. Passos, and J. P. Papa, “Ddipnet and Ddipnet+: Discriminant Deep Image Prior Networks for Remote Sensing Image Classification,” Int. Geosci. Remote Sens. Symp., pp. 2843–2846, 2021, doi: 10.1109/IGARSS47720.2021.9554277.
[19] S. Manikandan, C. Nigam, S. Ramakrishnan, and D. Seshagiri, “Generation of airborne synthetic aperture radar video from stripmap and spot mode images and frame rate analysis,” 2020 IEEE India Geosci. Remote Sens. Symp. InGARSS 2020 - Proc., pp. 142–145, 2020, doi: 10.1109/InGARSS48198.2020.9358941.
[20] A. Quevedo et al., “Jalisco’s multiclass land cover analysis and classification using a novel lightweight convnet with real-world multispectral and relief data,” no. Dl, 2022, [Online]. Available: http://arxiv.org/abs/2201.10985
[21] X. Tan, Z. Xiao, J. Zhu, Q. Wan, K. Wang, and D. Li, “Transformer-Driven Semantic Relation Inference for Multilabel Classification of High-Resolution Remote Sensing Images,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 15, pp. 1884–1901, 2022, doi: 10.1109/JSTARS.2022.3145042.
[22] A. Babu, D. Gerber, S. V. Baumgartner, and G. Krieger, “Road Surface Roughness Estimation Using Spaceborne Synthetic Aperture Radar,” IEEE Geosci. Remote Sens. Lett., vol. 20, pp. 1–5, 2023, doi: 10.1109/LGRS.2023.3309944.
[23] A. Singh and L. Bruzzone, “Mono-and Dual-Regulated Contractive-Expansive-Contractive Deep Convolutional
[24] Networks for Classification of Multispectral Remote Sensing Images,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022, doi: 10.1109/LGRS.2022.3211861
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2024 Desynike Puspa Anggreyni, Indriatmoko, Aniati Murni Arymurthy, Andie Setiyoko

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License