Multi-Platform Detection of Melon Leaf Abnormalities Using AVGHEQ and YOLOv7
DOI:
https://doi.org/10.15575/join.v10i1.1441Keywords:
AVGHEQ, Internet of Things, Melon Disease Detection, Multiplatform System, YOLOv7Abstract
References
[1] S. I. Kusumaningrum, “Pemanfaatan Sektor Pertanian Sebagai Penunjang Pertumbuhan Perekonomian Indonesia,” J. Transaksi, vol. 11, no. 1, pp. 80–89, 2019, [Online]. Available: http://ejournal.atmajaya.ac.id/index.php/transaksi/article/view/477
[2] G. Afriyanti, Ana Mariya, Charita Natalia, Sirat Nispuana, M. Farhan Wijaya, and M. Yoga Phalepi, “the Role of the Agricultural Sector on Economic Growth in Indonesia,” Indones. J. Multidiscip. Sci., vol. 2, no. 1, pp. 167–179, 2023, doi: 10.59066/ijoms.v2i1.325.
[3] BPS Provinsi Bengkulu, “Provinsi Bengkulu dalam Angka 2022,” 2022.
[4] O. S. University, “Environmental factors affecting plant growth,” 2024.
[5] D. A. Fitria and M. I. Riyadi, “Strategi Coping Stres Pada Petani Melon Pasca Gagal Panen di Desa Maguwan, Kecamatan Sambit, Kabupaten Ponorogo,” Rosyada Islam. Guid. Couns., vol. 3, no. 1, p. 51, 2022.
[6] E. W. Andrianto, N. Hidayat, and Suprapto, “Sistem Pakar Diagnosis Penyakit Pada Tanaman Jagung Menggunakan Metode Naive Bayes Berbasis Android,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 7, pp. 2738–2744, 2018, [Online]. Available: http://j-ptiik.ub.ac.id
[7] A. Kamilaris and F. X. Prenafeta-Boldú, “Deep learning in agriculture: A survey,” Comput. Electron. Agric., vol. 147, no. July 2017, pp. 70–90, 2018, doi: 10.1016/j.compag.2018.02.016.
[8] C. S. R. Silva and J. M. Fonseca, Artificial Intelligence and Algorithms in Intelligent Systems, vol. 2. 2019. doi: 10.1007/978-3-319-91189-2_30.
[9] I. Goodfellow, Y. Bengio, and · Aaron Courville, “Deep Learning,” Foreign Aff., vol. 91, no. 5, pp. 1689–1699, 2016.
[10] F. Chollet, Deep Learning with Python. New York: Manning Publications Co., 2018. doi: 10.23919/ICIF.2018.8455530.
[11] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object Detection in 20 Years: A Survey,” pp. 1–39, 2019, [Online]. Available: http://arxiv.org/abs/1905.05055
[12] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” pp. 1–15, 2022, [Online]. Available: http://arxiv.org/abs/2207.02696
[13] J. Nano, “Jetson Nano Developer Kit,” 2023.
[14] C. Tan, “Jetson Nano vs Raspberry Pi 4: The Differences,” Https://All3Dp.Com/2/Raspberry-Pi-Vs-Jetson-Nano-Differences/, 2021.
[15] Y. Li, J. Wang, H. Wu, Y. Yu, H. Sun, and H. Zhang, “Detection of powdery mildew on strawberry leaves based on DAC-YOLOv4 model,” Comput. Electron. Agric., vol. 202, no. October, p. 107418, 2022, doi: 10.1016/j.compag.2022.107418.
[16] Y. Xu et al., “Real-time object detection method of melon leaf diseases under complex background in greenhouse,” J. Real-Time Image Process., vol. 19, no. 5, pp. 985–995, 2022, doi: 10.1007/s11554-022-01239-7.
[17] H. Rahmat, S. Wahjuni, and H. Rahmawan, “Performance Analysis of Deep Learning-based Object Detectors on Raspberry Pi for Detecting Melon Leaf Abnormality,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 12, no. 2, pp. 572–579, 2022, doi: 10.18517/ijaseit.12.2.13801.
[18] S. C. F. Lin et al., “Image enhancement using the averaging histogram equalization (AVHEQ) approach for contrast improvement and brightness preservation,” Comput. Electr. Eng., vol. 46, pp. 356–370, 2015, doi: 10.1016/j.compeleceng.2015.06.001.
[19] S. Yang, W. Xiao, M. Zhang, S. Guo, J. Zhao, and F. Shen, “Image Data Augmentation for Deep Learning: A Survey,” 2022, [Online]. Available: http://arxiv.org/abs/2204.08610
[20] T. Kumar, M. Turab, K. Raj, A. Mileo, R. Brennan, and M. Bendechache, “Advanced Data Augmentation Approaches: A Comprehensive Survey and Future directions,” vol. 6223, 2023, [Online]. Available: http://arxiv.org/abs/2301.02830
[21] K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data augmentation techniques,” Glob. Transitions Proc., vol. 3, no. 1, pp. 91–99, 2022, doi: 10.1016/j.gltp.2022.04.020.
[22] D. Berrar, “Cross-validation,” Encycl. Bioinforma. Comput. Biol. ABC Bioinforma., vol. 1–3, no. January 2018, pp. 542–545, 2018, doi: 10.1016/B978-0-12-809633-8.20349-X.
[23] A. Salazar-Gomez, M. Darbyshire, J. Gao, E. I. Sklar, and S. Parsons, “Beyond mAP: Towards practical object detection for weed spraying in precision agriculture,” IEEE Int. Conf. Intell. Robot. Syst., vol. 2022-Octob, pp. 9232–9238, 2022, doi: 10.1109/IROS47612.2022.9982139.
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2025 Sahrial Ihsani Ishak, Karlisa Priandana, Sri Wahjuni

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License