Multi-Platform Detection of Melon Leaf Abnormalities Using AVGHEQ and YOLOv7

Authors

  • Sahrial Ihsani Ishak School of Data Science, Mathematics and Informatics, IPB University, Bogor, Indonesia https://orcid.org/0000-0002-7314-9610
  • Karlisa Priandana School of Data Science, Mathematics and Informatics, IPB University, Bogor, Indonesia
  • Sri Wahjuni School of Data Science, Mathematics and Informatics, IPB University, Bogor, Indonesia

DOI:

https://doi.org/10.15575/join.v10i1.1441

Keywords:

AVGHEQ, Internet of Things, Melon Disease Detection, Multiplatform System, YOLOv7

Abstract

This research develops a multiplatform system for detecting abnormalities in melon leaves, integrating an Internet of Things (IoT) approach using Jetson Nano, a Streamlit-based website, and a mobile application for real-time monitoring. The system employs preprocessing with Average Histogram Equalization (AVGHEQ) to enhance image quality, followed by modeling with the YOLOv7 algorithm on a dataset of 469 training images and 52 test images, validated through 5-fold cross-validation. The model achieved a mean Average Precision (mAP) of 84% with an inference detection time of 4.5 milliseconds. Implementation on Jetson Nano resulted in a 25% increase in CPU usage (from 25% to 50%) and a 20% increase in RAM usage (from 70% to 90%). By combining these platforms and leveraging robust data preprocessing and modeling techniques, the system provides an accessible, efficient, and scalable solution for agricultural monitoring, enabling farmers to address plant health issues promptly and effectively.

References

[1] S. I. Kusumaningrum, “Pemanfaatan Sektor Pertanian Sebagai Penunjang Pertumbuhan Perekonomian Indonesia,” J. Transaksi, vol. 11, no. 1, pp. 80–89, 2019, [Online]. Available: http://ejournal.atmajaya.ac.id/index.php/transaksi/article/view/477

[2] G. Afriyanti, Ana Mariya, Charita Natalia, Sirat Nispuana, M. Farhan Wijaya, and M. Yoga Phalepi, “the Role of the Agricultural Sector on Economic Growth in Indonesia,” Indones. J. Multidiscip. Sci., vol. 2, no. 1, pp. 167–179, 2023, doi: 10.59066/ijoms.v2i1.325.

[3] BPS Provinsi Bengkulu, “Provinsi Bengkulu dalam Angka 2022,” 2022.

[4] O. S. University, “Environmental factors affecting plant growth,” 2024.

[5] D. A. Fitria and M. I. Riyadi, “Strategi Coping Stres Pada Petani Melon Pasca Gagal Panen di Desa Maguwan, Kecamatan Sambit, Kabupaten Ponorogo,” Rosyada Islam. Guid. Couns., vol. 3, no. 1, p. 51, 2022.

[6] E. W. Andrianto, N. Hidayat, and Suprapto, “Sistem Pakar Diagnosis Penyakit Pada Tanaman Jagung Menggunakan Metode Naive Bayes Berbasis Android,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 7, pp. 2738–2744, 2018, [Online]. Available: http://j-ptiik.ub.ac.id

[7] A. Kamilaris and F. X. Prenafeta-Boldú, “Deep learning in agriculture: A survey,” Comput. Electron. Agric., vol. 147, no. July 2017, pp. 70–90, 2018, doi: 10.1016/j.compag.2018.02.016.

[8] C. S. R. Silva and J. M. Fonseca, Artificial Intelligence and Algorithms in Intelligent Systems, vol. 2. 2019. doi: 10.1007/978-3-319-91189-2_30.

[9] I. Goodfellow, Y. Bengio, and · Aaron Courville, “Deep Learning,” Foreign Aff., vol. 91, no. 5, pp. 1689–1699, 2016.

[10] F. Chollet, Deep Learning with Python. New York: Manning Publications Co., 2018. doi: 10.23919/ICIF.2018.8455530.

[11] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object Detection in 20 Years: A Survey,” pp. 1–39, 2019, [Online]. Available: http://arxiv.org/abs/1905.05055

[12] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” pp. 1–15, 2022, [Online]. Available: http://arxiv.org/abs/2207.02696

[13] J. Nano, “Jetson Nano Developer Kit,” 2023.

[14] C. Tan, “Jetson Nano vs Raspberry Pi 4: The Differences,” Https://All3Dp.Com/2/Raspberry-Pi-Vs-Jetson-Nano-Differences/, 2021.

[15] Y. Li, J. Wang, H. Wu, Y. Yu, H. Sun, and H. Zhang, “Detection of powdery mildew on strawberry leaves based on DAC-YOLOv4 model,” Comput. Electron. Agric., vol. 202, no. October, p. 107418, 2022, doi: 10.1016/j.compag.2022.107418.

[16] Y. Xu et al., “Real-time object detection method of melon leaf diseases under complex background in greenhouse,” J. Real-Time Image Process., vol. 19, no. 5, pp. 985–995, 2022, doi: 10.1007/s11554-022-01239-7.

[17] H. Rahmat, S. Wahjuni, and H. Rahmawan, “Performance Analysis of Deep Learning-based Object Detectors on Raspberry Pi for Detecting Melon Leaf Abnormality,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 12, no. 2, pp. 572–579, 2022, doi: 10.18517/ijaseit.12.2.13801.

[18] S. C. F. Lin et al., “Image enhancement using the averaging histogram equalization (AVHEQ) approach for contrast improvement and brightness preservation,” Comput. Electr. Eng., vol. 46, pp. 356–370, 2015, doi: 10.1016/j.compeleceng.2015.06.001.

[19] S. Yang, W. Xiao, M. Zhang, S. Guo, J. Zhao, and F. Shen, “Image Data Augmentation for Deep Learning: A Survey,” 2022, [Online]. Available: http://arxiv.org/abs/2204.08610

[20] T. Kumar, M. Turab, K. Raj, A. Mileo, R. Brennan, and M. Bendechache, “Advanced Data Augmentation Approaches: A Comprehensive Survey and Future directions,” vol. 6223, 2023, [Online]. Available: http://arxiv.org/abs/2301.02830

[21] K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data augmentation techniques,” Glob. Transitions Proc., vol. 3, no. 1, pp. 91–99, 2022, doi: 10.1016/j.gltp.2022.04.020.

[22] D. Berrar, “Cross-validation,” Encycl. Bioinforma. Comput. Biol. ABC Bioinforma., vol. 1–3, no. January 2018, pp. 542–545, 2018, doi: 10.1016/B978-0-12-809633-8.20349-X.

[23] A. Salazar-Gomez, M. Darbyshire, J. Gao, E. I. Sklar, and S. Parsons, “Beyond mAP: Towards practical object detection for weed spraying in precision agriculture,” IEEE Int. Conf. Intell. Robot. Syst., vol. 2022-Octob, pp. 9232–9238, 2022, doi: 10.1109/IROS47612.2022.9982139.

Downloads

Published

2025-05-09

Issue

Section

Article

Citation Check

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.