The Impact of Online Reviews to Predict The Number of International Tourists
DOI:
https://doi.org/10.15575/join.v10i1.1409Keywords:
International tourists, Online Review, Sentiment Analysis, Prediction, LSTMAbstract
References
[1] UNWTO, “UNWTO | World Tourism Organization a UN Specialized Agency.” 2019. [Online]. Available: https://www.unwto.org/
[2] OECD, “OECD Data,” OECD website. 2021. [Online]. Available: https://data.oecd.org/
[3] BPS, “Proporsi Kontribusi Pariwisata Terhadap PDB,” Https://Www.Bps.Go.Id/Indicator/16/1188/1/Proporsi-Kontribusi-Pariwisata-Terhadap-Pdb.Html. 2021.
[4] S. Wibowo, O. Rusmana, and Z. Zuhelfa, “Pengembangan Ekonomi Melalui Sektor Pariwisata Tourism,” J. Kepariwisataan Destin. Hosp. dan Perjalanan, vol. 1, no. 2, pp. 83–89, 2017, doi: 10.34013/jk.v1i2.13.
[5] IRTS, Role of the International Recommendations for Tourism Statistics 2008. 2017. doi: 10.18356/05265168-en.
[6] Badan Pusat Statistik, “Kunjungan Wisatawan Mancanegara per bulan Menurut Kebangsaan (Kunjungan) 2023.” pp. 335–58, 2023. [Online]. Available: https://www.bps.go.id/linkTableDinamis/view/id/960.
[7] Kemenparekraf, “Siaran Pers_ Menparekraf_ Presiden Minta Target Wisman dan Wisnus Harus Tercapai.”
[8] Kemenparekraf, Indonesia. The Weekly Brief with Sandi Uno - 9 Oktober 2023, (2023). [Online]. Available: https://www.youtube.com/live/kikH5cMHhbI?si=XH03Ns_K814we-Rf
[9] Kemenparekraf, “Strategi Digital Tourism dalam Menggaet Wisatawan,” Kemenparekraf.Go.Id. 2021. [Online]. Available: https://kemenparekraf.go.id/ragam-pariwisata/Strategi-Digital-Tourism-dalam-Menggaet-Wisatawan
[10] P. F. Pai, K. C. Hung, and K. P. Lin, “Tourism demand forecasting using novel hybrid system,” Expert Syst. Appl., vol. 41, no. 8, pp. 3691–3702, 2014, doi: 10.1016/j.eswa.2013.12.007.
[11] T. Dergiades, E. Mavragani, and B. Pan, “Google Trends and tourists’ arrivals: Emerging biases and proposed corrections,” Tour. Manag., vol. 66, pp. 108–120, 2018, doi: 10.1016/j.tourman.2017.10.014.
[12] J. Lemmel et al., “Deep-Learning vs Regression: Prediction of Tourism Flow with Limited Data,” 2022, [Online]. Available: http://arxiv.org/abs/2206.13274
[13] J. Li, L. Xu, L. Tang, S. Wang, and L. Li, “Big data in tourism research: A literature review,” Tour. Manag., vol. 68, pp. 301–323, 2018, doi: 10.1016/j.tourman.2018.03.009.
[14] G. Management, B. Data, and W. Model, “Research in Business and Gossip Management at Universities using Big,” vol. 5, no. 1, pp. 1–14, 2016.
[15] E. Park, J. Park, and M. Hu, “Tourism demand forecasting with online news data mining,” Ann. Tour. Res., vol. 90, p. 103273, 2021, doi: 10.1016/j.annals.2021.103273.
[16] H. Laaroussi and F. Guerouate, “Deep learning framework for forecasting tourism demand,” in 2020 IEEE international conference on technology management, operations and decisions (ICTMOD), IEEE, 2020, pp. 1–4.
[17] S. C. Hsieh, “Tourism demand forecasting based on an lstm network and its variants,” Algorithms, vol. 14, no. 8, 2021, doi: 10.3390/a14080243.
[18] Presiden RI, “Keputusan Presiden RI No. 11 Tahun 2020,” Fundam. Nurs., no. 01, p. 18=30, 2020.
[19] P. P. Indonesia, “Keputusan Presiden Nomor 17 Tahun 2023 tentang Penetapan Berakhirnya Status Pandemi Corona Virus Disease 2019 (COVID-19) di Indonesia,” Jakarta Pemerintah Pus., no. 167292, pp. 1–3, 2023.
[20] X. Li, B. Pan, R. Law, and X. Huang, “Forecasting tourism demand with composite search index,” Tour. Manag., vol. 59, pp. 57–66, 2017, doi: 10.1016/j.tourman.2016.07.005.
[21] T. Bey and I. K. Ari, “Implementasi BERT pada Analisis Sentimen Ulasan Destinasi Wisata Bali,” J. Elektron. Ilmu Komput. Udayana, vol. 12, no. 2, pp. 409–420, 2023.
[22] G. Danilov, T. Ishankulov, K. Kotik, Y. Orlov, M. Shifrin, and A. Potapov, “The classification of short scientific texts using pretrained BERT model,” Public Heal. Informatics Proc. MIE 2021, vol. 0, pp. 83–87, 2021, doi: 10.3233/SHTI210125.
[23] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” NAACL HLT 2019 - 2019 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. - Proc. Conf., vol. 1, no. Mlm, pp. 4171–4186, 2019.
[24] H. Alsagri and M. Ykhlef, “Quantifying feature importance for detecting depression using random forest,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 5, pp. 628–635, 2020, doi: 10.14569/IJACSA.2020.0110577.
[25] R. I. Agustin, “Peramalan Data Intermiten Menggunakan Metode Autoregresive Integrated Moving Average dan Neural Network,” Dep. Sist. Inf. Fak. Teknol. Inf. Dan Komun. Inst. Teknol. Sepuluh Nop. Surabaya, 2018.
[26] Z. Wang et al., “Climate and environmental data contribute to the prediction of grain commodity prices using deep learning,” J. Sustain. Agric. Environ., vol. 2, no. 3, pp. 251–265, 2023, doi: 10.1002/sae2.12041.
[27] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio, “An empirical evaluation of deep architectures on problems with many factors of variation,” ACM Int. Conf. Proceeding Ser., vol. 227, no. 2006, pp. 473–480, 2007, doi: 10.1145/1273496.1273556.
[28] U. Khalid, L. E. Okafor, and M. Shafiullah, “The Effects of Economic and Financial Crises on International Tourist Flows: A Cross-Country Analysis,” J. Travel Res., vol. 59, no. 2, pp. 315–334, 2020, doi: 10.1177/0047287519834360.
[29] A. Suryani, S. Soedarso, D. Rahmawati, E. Endarko, A. Muklason, and B. M. Wibawa, “Why What they Say Matters: The Impacts of Visitors’ Experiences on Tourism Sustainability,” Int. J. Soc. Sci. Bus., vol. 5, no. 1, pp. 99–110, 2021, doi: 10.23887/ijssb.v5i1.31355.
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2025 Zhasa Vashellya, Erna Nurmawati, Teguh Sugiyarto

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License