The Impact of Online Reviews to Predict The Number of International Tourists

Authors

  • Zhasa Vashellya Computational Statistics Study Program, STIS Polytechnic of Statistics, Indonesia
  • Erna Nurmawati Computational Statistics Study Program, STIS Polytechnic of Statistics, Indonesia
  • Teguh Sugiyarto Directorate of Finance, Information Technology, Tourism Statistics, BPS-Statistics, Indonesia

DOI:

https://doi.org/10.15575/join.v10i1.1409

Keywords:

International tourists, Online Review, Sentiment Analysis, Prediction, LSTM

Abstract

The tourism sector is a potential resource for advancing the Indonesian economy. The development of the tourism industry is represented by the number of international tourist arrivals. Therefore, this indicator becomes an objective in development programs. To accomplish this goal and assess the demand aspect of the tourism sector, it is a must to have a precise forecast of the number of international visitors. This research attempts to develop precise methods and models for estimating the number of international tourists based on this premise. This study chooses Bali Province as its focus since nearly half, or 47%, of the tourists who visit Indonesia arrive through the entry point in Bali Province. This research uses the LSTM method and big data online reviews in building prediction models. The results of this study show that sentiment analysis of tourist attractions in Bali using the BERT model has an accuracy of 75%. The results also depict that reviews by visitors about tourist attractions in Bali Province during the period 2012-2023 contain more positive sentiments. Furthermore, the best model to predict the number of international tourists, with the smallest RMSE and MAPE values (39,470.64 and 11.25%, respectively), includes inflation, rupiah exchange rates, TPK, monthly sentiment scores, and the number of reviews as dependent variables. The prediction model also show that the review variables (sentiment score and number of reviews) can improve prediction accuracy.

References

[1] UNWTO, “UNWTO | World Tourism Organization a UN Specialized Agency.” 2019. [Online]. Available: https://www.unwto.org/

[2] OECD, “OECD Data,” OECD website. 2021. [Online]. Available: https://data.oecd.org/

[3] BPS, “Proporsi Kontribusi Pariwisata Terhadap PDB,” Https://Www.Bps.Go.Id/Indicator/16/1188/1/Proporsi-Kontribusi-Pariwisata-Terhadap-Pdb.Html. 2021.

[4] S. Wibowo, O. Rusmana, and Z. Zuhelfa, “Pengembangan Ekonomi Melalui Sektor Pariwisata Tourism,” J. Kepariwisataan Destin. Hosp. dan Perjalanan, vol. 1, no. 2, pp. 83–89, 2017, doi: 10.34013/jk.v1i2.13.

[5] IRTS, Role of the International Recommendations for Tourism Statistics 2008. 2017. doi: 10.18356/05265168-en.

[6] Badan Pusat Statistik, “Kunjungan Wisatawan Mancanegara per bulan Menurut Kebangsaan (Kunjungan) 2023.” pp. 335–58, 2023. [Online]. Available: https://www.bps.go.id/linkTableDinamis/view/id/960.

[7] Kemenparekraf, “Siaran Pers_ Menparekraf_ Presiden Minta Target Wisman dan Wisnus Harus Tercapai.”

[8] Kemenparekraf, Indonesia. The Weekly Brief with Sandi Uno - 9 Oktober 2023, (2023). [Online]. Available: https://www.youtube.com/live/kikH5cMHhbI?si=XH03Ns_K814we-Rf

[9] Kemenparekraf, “Strategi Digital Tourism dalam Menggaet Wisatawan,” Kemenparekraf.Go.Id. 2021. [Online]. Available: https://kemenparekraf.go.id/ragam-pariwisata/Strategi-Digital-Tourism-dalam-Menggaet-Wisatawan

[10] P. F. Pai, K. C. Hung, and K. P. Lin, “Tourism demand forecasting using novel hybrid system,” Expert Syst. Appl., vol. 41, no. 8, pp. 3691–3702, 2014, doi: 10.1016/j.eswa.2013.12.007.

[11] T. Dergiades, E. Mavragani, and B. Pan, “Google Trends and tourists’ arrivals: Emerging biases and proposed corrections,” Tour. Manag., vol. 66, pp. 108–120, 2018, doi: 10.1016/j.tourman.2017.10.014.

[12] J. Lemmel et al., “Deep-Learning vs Regression: Prediction of Tourism Flow with Limited Data,” 2022, [Online]. Available: http://arxiv.org/abs/2206.13274

[13] J. Li, L. Xu, L. Tang, S. Wang, and L. Li, “Big data in tourism research: A literature review,” Tour. Manag., vol. 68, pp. 301–323, 2018, doi: 10.1016/j.tourman.2018.03.009.

[14] G. Management, B. Data, and W. Model, “Research in Business and Gossip Management at Universities using Big,” vol. 5, no. 1, pp. 1–14, 2016.

[15] E. Park, J. Park, and M. Hu, “Tourism demand forecasting with online news data mining,” Ann. Tour. Res., vol. 90, p. 103273, 2021, doi: 10.1016/j.annals.2021.103273.

[16] H. Laaroussi and F. Guerouate, “Deep learning framework for forecasting tourism demand,” in 2020 IEEE international conference on technology management, operations and decisions (ICTMOD), IEEE, 2020, pp. 1–4.

[17] S. C. Hsieh, “Tourism demand forecasting based on an lstm network and its variants,” Algorithms, vol. 14, no. 8, 2021, doi: 10.3390/a14080243.

[18] Presiden RI, “Keputusan Presiden RI No. 11 Tahun 2020,” Fundam. Nurs., no. 01, p. 18=30, 2020.

[19] P. P. Indonesia, “Keputusan Presiden Nomor 17 Tahun 2023 tentang Penetapan Berakhirnya Status Pandemi Corona Virus Disease 2019 (COVID-19) di Indonesia,” Jakarta Pemerintah Pus., no. 167292, pp. 1–3, 2023.

[20] X. Li, B. Pan, R. Law, and X. Huang, “Forecasting tourism demand with composite search index,” Tour. Manag., vol. 59, pp. 57–66, 2017, doi: 10.1016/j.tourman.2016.07.005.

[21] T. Bey and I. K. Ari, “Implementasi BERT pada Analisis Sentimen Ulasan Destinasi Wisata Bali,” J. Elektron. Ilmu Komput. Udayana, vol. 12, no. 2, pp. 409–420, 2023.

[22] G. Danilov, T. Ishankulov, K. Kotik, Y. Orlov, M. Shifrin, and A. Potapov, “The classification of short scientific texts using pretrained BERT model,” Public Heal. Informatics Proc. MIE 2021, vol. 0, pp. 83–87, 2021, doi: 10.3233/SHTI210125.

[23] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” NAACL HLT 2019 - 2019 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. - Proc. Conf., vol. 1, no. Mlm, pp. 4171–4186, 2019.

[24] H. Alsagri and M. Ykhlef, “Quantifying feature importance for detecting depression using random forest,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 5, pp. 628–635, 2020, doi: 10.14569/IJACSA.2020.0110577.

[25] R. I. Agustin, “Peramalan Data Intermiten Menggunakan Metode Autoregresive Integrated Moving Average dan Neural Network,” Dep. Sist. Inf. Fak. Teknol. Inf. Dan Komun. Inst. Teknol. Sepuluh Nop. Surabaya, 2018.

[26] Z. Wang et al., “Climate and environmental data contribute to the prediction of grain commodity prices using deep learning,” J. Sustain. Agric. Environ., vol. 2, no. 3, pp. 251–265, 2023, doi: 10.1002/sae2.12041.

[27] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio, “An empirical evaluation of deep architectures on problems with many factors of variation,” ACM Int. Conf. Proceeding Ser., vol. 227, no. 2006, pp. 473–480, 2007, doi: 10.1145/1273496.1273556.

[28] U. Khalid, L. E. Okafor, and M. Shafiullah, “The Effects of Economic and Financial Crises on International Tourist Flows: A Cross-Country Analysis,” J. Travel Res., vol. 59, no. 2, pp. 315–334, 2020, doi: 10.1177/0047287519834360.

[29] A. Suryani, S. Soedarso, D. Rahmawati, E. Endarko, A. Muklason, and B. M. Wibawa, “Why What they Say Matters: The Impacts of Visitors’ Experiences on Tourism Sustainability,” Int. J. Soc. Sci. Bus., vol. 5, no. 1, pp. 99–110, 2021, doi: 10.23887/ijssb.v5i1.31355.

Downloads

Published

2025-04-01

Issue

Section

Article

Citation Check

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.