Comparison of EfficientNetB0 and EfficientNetB7 Models in Classifying Malaria Based on Blood Cells
DOI:
https://doi.org/10.15575/join.v9i2.1195Keywords:
Classification, Convolutional Neural Network, EfficientNet , MalariaAbstract
References
[1] N. K. C. PRATIWI, N. IBRAHIM, Y. N. FU’ADAH, and S. RIZAL, “Deteksi Parasit Plasmodium pada Citra Mikroskopis Hapusan Darah dengan Metode Deep Learning,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 9, no. 2, p. 306, 2021, doi: 10.26760/elkomika.v9i2.306.
[2] R. Puasa, A. A. H, and A. Kader, “Identifikasi Plasmodium Malaria Didesa Beringin Jaya Kecamatan Oba Tengah Kota Tidore Kepulauan,” J. Ris. Kesehat., vol. 7, no. 1, p. 21, 2018, doi: 10.31983/jrk.v7i1.3056.
[3] M. R. Islam et al., “Explainable Transformer-Based Deep Learning Model for the Detection of Malaria Parasites from Blood Cell Images,” Sensors, vol. 22, no. 12, pp. 1–20, 2022, doi: 10.3390/s22124358.
[4] P. Chanda-Kapata, N. Kapata, and A. Zumla, “COVID-19 and malaria: A symptom screening challenge for malaria endemic countries,” Int. J. Infect. Dis., vol. 94, pp. 151–153, 2020, doi: 10.1016/j.ijid.2020.04.007.
[5] Y. Yohannes, S. Devella, and K. Arianto, “Deteksi Penyakit Malaria Menggunakan Convolutional Neural Network Berbasis Saliency,” JUITA J. Inform., vol. 8, no. 1, p. 37, 2020, doi: 10.30595/juita.v8i1.6671.
[6] WHO, W. H. O. (2020) World Malaria Report 2020. Diambil 1 april 2023, dari https://www.who.int/publications/i/item/9789240015791
[7] J. E. Mosso and C. Song, “Distribusi prevalensi infeksi Plasmodium serta gambaran kepadatan parasit dan jumlah limfosit absolut pada penderita malaria di RSUD Kabupaten Manokwari periode Januari – Maret 2019,” Tarumanagara Med. J., vol. 2, no. 2, pp. 320–330, 2020, doi: 10.24912/tmj.v3i1.9735.
[8] A. Alim, A. Adam, and B. Dimi, “Prevalensi Malaria Berdasarkan Karakteristik Sosio Demografi,” J. Ilm. Kesehat., vol. 19, no. 01, pp. 4–9, 2020, doi: 10.33221/jikes.v19i01.399.
[9] J. Talapko, I. Škrlec, T. Alebić, M. Jukić, and A. Včev, “Malaria: The past and the present,” Microorganisms, vol. 7, no. 6, 2019, doi: 10.3390/microorganisms7060179.
[10] Y. Gustiani, K. Pramudho, and D. Sadik, “Analisis Faktor Yang Berhubungan Dengan 38 Pencegahan Penyakit Malaria,” J. Ilm. Permas J. Ilm. STIKES Kendal, vol. 11, pp. 1– 22, 2021, [Online]. Available: http://journal.stikeskendal.ac.id/index.php/PSKM.
[11] M. Harahap, J. Jefferson, S. Barti, S. Samosir, and C. A. Turnip, “Implementation of Convolutional Neural Network in the classification of red blood cells have affected of malaria,” SinkrOn, vol. 5, no. 2, pp. 199–207, 2020, doi: 10.33395/sinkron.v5i2.10713.
[12] A. W. Setiawan et al., “Deteksi Malaria Berbasis Segmentasi Warna Citra Dan Malaria Detection Using Color Image Segmentation and Machine,” vol. 8, no. 4, pp. 769–776, 2021, doi: 10.25126/jtiik.202184377.
[13] L. A. Andika, H. Pratiwi, and S. S. Handajani, “Klasifikasi Penyakit Pneumonia Menggunakan Metode Convolutional Neural Network Dengan Optimasi Adaptive Momentum,” Indones. J. Stat. Its Appl., vol. 3, no. 3, pp. 331–340, 2019, doi: 10.29244/ijsa.v3i3.560.
[14] M. Z. Ersyad, K. N. Ramadhani, A. Arifianto, and L. Belakang, “Pengenalan Bentuk Tangan dengan Convolutional Neural Network (CNN),” e-Proceeding Eng., vol. 7, no. 2, pp. 8212–8222, 2020.
[15] V. M. P. Salawazo, D. P. J. Gea, R. F. Gea, and F. Azmi, “Implementasi Metode Convolutional Neural Network ( CNN ) Pada Peneganalan Objek Video Cctv,” J. Mantik Penusa, vol. 3, no. 1, pp. 74–79, 2019.
[16] C. Garbin, X. Zhu, and O. Marques, “Dropout vs. batch normalization: an empirical study of their impact to deep learning,” Multimed. Tools Appl., vol. 79, no. 19–20, pp. 12777–12815, 2020, doi: 10.1007/s11042-019-08453-9.
[17] K. Sriporn, C.-F. Tsai, C.-E. Tsai, and P. Wang, “Analyzing Malaria Disease Using Effective Deep Learning Approach,” Diagnostics, pp. 1–22. doi.org/10.3390/diagnostics10100744
[18] I. G. S. M. Diyasa, A. Fauzi, A. Setiawan, M. Idhom, R. R. Wahid, and A. D. Alhajir, “Pre-Trained Deep Convolutional Neural Network for Detecting Malaria on the Human Blood Smear Images,” 3rd Int. Conf. Artif. Intell. Inf. Commun. ICAIIC 2021, pp. 235– 240, 2021, doi: 10.1109/ICAIIC51459.2021.9415183.
[19] Mbanefo A, Kumar N. Evaluation of Malaria Diagnostic Methods as a Key for Successful Control and Elimination Programs. Trop Med Infect Dis. 2020 Jun 19;5(2):102. doi: 10.3390/tropicalmed5020102.
[20] I. G. S. M. Diyasa, A. Fauzi, A. Setiawan, M. Idhom, R. R. Wahid, and A. D. Alhajir, “Pre-Trained Deep Convolutional Neural Network for Detecting Malaria on the Human Blood Smear Images,” 3rd Int. Conf. Artif. Intell. Inf. Commun. ICAIIC 2021, pp. 235– 240, 2021, doi: 10.1109/ICAIIC51459.2021.9415183.
[21] M. M. QANBAR and S. TASDEMIR, “Detection of Malaria Diseases with Residual Attention Network,” IJISAE, vol. 7, no. 4, pp. 238–244, 2019, doi: https://doi.org/10.18201/ijisae.2019457677
[22] D. Shah, K. Kawale, M. Shah, S. Randive, and R. Mapari, “Malaria Parasite Detection Using Deep Learning: (Beneficial to humankind),” Proc. Int. Conf. Intell. Comput. Control Syst. ICICCS 2020, no. Iciccs, pp. 984–988, 2020, doi: 10.1109/ICICCS48265.2020.9121073.
[23] kaggle datasets download -d iarunava/cell-images-for-detecting-malaria
[24] X. Xiao, M. Yan, S. Basodi, C. Ji, and Y. Pan, "Efficient Hyperparameter Optimization in Deep Learning Using a Variable Length Genetic Algorithm," arXiv, 2020.
https://doi.org/10.48550/arXiv.2006.12703
[25] M. Aji. Purnama Wibowo, Muhammad Bima Al Fayyadl, Yufis Azhar, and Zamah Sari, “Classification of Brain Tumors on MRI Images Using Convolutional Neural Network Model EfficientNet,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 4, pp. 538–547, 2022, doi: 10.29207/resti.v6i4.4119.
[26] D. R. Nayak, N. Padhy, P. K. Mallick, M. Zymbler, and S. Kumar, “Brain Tumor Classification Using Dense Efficient-Net,” Axioms, vol. 11, no. 1, 2022, doi: 10.3390/axioms11010034.
[27] Ulfah Nur Oktaviana and Yufis Azhar, “Klasifikasi Sampah Menggunakan Ensemble DenseNet169,” Resti, vol. 1, no. 1, pp. 19–25, 2021, doi: https://doi.org/10.29207/resti.v5i6.3673
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2024 Muhammad Rizkiansyah Maulana Kiki, Zamah Sari, Didih Rizki

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License