Malware Image Classification Using Deep Learning InceptionResNet-V2 and VGG-16 Method

Authors

  • Didih Rizki Chandranegara Department of Informatics, University of Muhammadiyah Malang, Indonesia, Indonesia
  • Jafar Shodiq Djawas Department of Informatics, University of Muhammadiyah Malang, Indonesia, Indonesia
  • Faiq Azmi Nurfaizi Department of Informatics, University of Muhammadiyah Malang, Indonesia, Indonesia
  • Zamah Sari Department of Informatics, University of Muhammadiyah Malang, Indonesia, Indonesia

DOI:

https://doi.org/10.15575/join.v8i1.1051

Keywords:

Classification, Convolutional neural network, InceptionResNet-V2, Malware, VGG-16

Abstract

Malware is intentionally designed to damage computers, servers, clients or computer networks. Malware is a general term used to describe any program designed to harm a computer or server. The goal is to commit a crime, such as gaining unauthorized access to a particular system, so as to compromise user security. Most malware still uses the same code to produce another different form of malware variants. Therefore, the ability to classify similar malware variant characteristics into malware families is a good strategy to stop malware. The research is useful for classifying malware on malware samples presented as bytemap grayscale images. The malware classification research focused on 25 malware classes with a total of 9,029 images from the Malimg dataset. This research implements the VGG-16 and InceptionResNet-V2 architectures by running 2 different scenarios, scenario 1 uses the original dataset and the other scenario uses the undersampled dataset. After building the model, each scenario will get an evaluation form such as accuracy, precision, recall, and f1-score. The highest score was obtained in scenario 2 on the VGG-16 method with a score of 94.8% and the lowest in scenario 2 on the InceptionResNet-V2 method with a score of 85.1%.

Author Biographies

Didih Rizki Chandranegara, Department of Informatics, University of Muhammadiyah Malang, Indonesia

Informatics Department of University of Muhammadiyah Malang

Jafar Shodiq Djawas, Department of Informatics, University of Muhammadiyah Malang, Indonesia

Informatics Department of University of Muhammadiyah Malang

Faiq Azmi Nurfaizi, Department of Informatics, University of Muhammadiyah Malang, Indonesia

Informatics Department of University of Muhammadiyah Malang

Zamah Sari, Department of Informatics, University of Muhammadiyah Malang, Indonesia

Informatics Department of University of Muhammadiyah Malang

References

M. A. Hama Saeed, “Malware in Computer Systems: Problems and Solutions,” IJID (International J. Informatics Dev., vol. 9, no. 1, p. 1, 2020, doi: 10.14421/ijid.2020.09101.

M. S. Akhtar and T. Feng, “Malware Analysis and Detection Using Machine Learning Algorithms,” Symmetry (Basel)., vol. 14, no. 11, p. 2304, 2022, doi: 10.3390/sym14112304.

M. N. Alenezi, H. Alabdulrazzaq, A. A. Alshaher, and M. M. Alkharang, “Evolution of Malware Threats and Techniques: A Review,” Int. J. Commun. Networks Inf. Secur., vol. 12, no. 3, pp. 326–337, 2020, doi: doi.org/10.17762/ijcnis.v12i3.4723.

F. A. Aboaoja, A. Zainal, F. A. Ghaleb, B. A. S. Al-rimy, T. A. E. Eisa, and A. A. H. Elnour, “Malware Detection Issues, Challenges, and Future Directions: A Survey,” Appl. Sci., vol. 12, no. 17, 2022, doi: 10.3390/app12178482.

S. Choi, J. Bae, C. Lee, Y. Kim, and J. Kim, “Attention-based automated feature extraction for malware analysis,” Sensors (Switzerland), vol. 20, no. 10, pp. 1–17, 2020, doi: 10.3390/s20102893.

H. Naeem, B. Guo, M. R. Naeem, F. Ullah, H. Aldabbas, and M. S. Javed, “Identification of malicious code variants based on image visualization,” Comput. Electr. Eng., vol. 76, pp. 225–237, 2019, doi: 10.1016/j.compeleceng.2019.03.015.

M. J. Awan et al., “Image?based malware classification using vgg19 network and spatial convolutional attention,” Electron., vol. 10, no. 19, 2021, doi: 10.3390/electronics10192444.

U.-H. Tayyab, F. B. Khan, M. H. Durad, A. Khan, and Y. S. Lee, “A Survey of the Recent Trends in Deep Learning Based Malware Detection,” J. Cybersecurity Priv., vol. 2, no. 4, pp. 800–829, 2022, doi: 10.3390/jcp2040041.

A. Thomas, P. M. Harikrishnan, P. Palanisamy, and V. P. Gopi, “Moving Vehicle Candidate Recognition and Classification Using Inception-ResNet-v2,” Proc. - 2020 IEEE 44th Annu. Comput. Software, Appl. Conf. COMPSAC 2020, pp. 467–472, 2020, doi: 10.1109/COMPSAC48688.2020.0-207.

Q. Guan et al., “Deep convolutional neural network VGG-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: A pilot study,” J. Cancer, vol. 10, no. 20, pp. 4876–4882, 2019, doi: 10.7150/jca.28769.

D. Pant and R. Bista, “Image-based Malware Classification using Deep Convolutional Neural Network and Transfer Learning,” ACM Int. Conf. Proceeding Ser., 2021, doi: 10.1145/3503047.3503081.

A. Bensaoud, N. Abudawaood, and J. Kalita, “Classifying Malware Images with Convolutional Neural Network Models,” 2020, doi: 10.6633/IJNS.202011_22(6).17.

H. U. Sharif, N. Jiwani, K. Gupta, M. A. Mohammed, and M. F. Ansari, “a Deep Learning Based Technique for the Classification of Malware Images,” J. Theor. Appl. Inf. Technol., vol. 101, no. 1, pp. 135–160, 2023, [Online]. Available: http://www.jatit.org/volumes/Vol101No1/12Vol101No1.pdf

K. R. Goyal Manish, “AVMCT: API Calls Visualization based Malware Classification using Transfer Learning,” vol. 13, no. 1, pp. 31–41, 2022, doi: doi.org/10.52783/jas.v13i1.59.

E. G. Winarto et al., “Implementasi Arsitektur Inception Resnet-V2 untuk Klasifikasi Kualitas Biji Kakao,” Proceeding KONIK (Konferensi Nas. Ilmu Komputer), pp. 132–137, 2021, [Online]. Available: https://prosiding.konik.id/index.php/konik/article/view/38/31

P. Nugraha, A. Komarudin, E. Ramadhan, and D. Learning, “Deteksi Objek Dan Jenis Burung Menggunakan Convolutional Neural Network Dengan Arsitektur Inception Resnet-V2,” INFOTECH J., vol. 8, pp. 47–55, 2022, doi: doi.org/10.31949/infotech.v8I2.2889.

I. B. K. Sudiatmika and I. G. A. A. S. Dewi, “Indonesian Shadow Puppet Recognition Using VGG-16 and Cosine Similarity,” Int. J. Informatics Comput. Sci., vol. 5, no. 1, pp. 1–6, 2021, doi: 10.30865/ijics.v5i1.2579.

D. Albashish, R. Al-Sayyed, A. Abdullah, M. H. Ryalat, and N. Ahmad Almansour, “Deep CNN Model based on VGG16 for Breast Cancer Classification,” 2021 Int. Conf. Inf. Technol. ICIT 2021 - Proc., pp. 805–810, 2021, doi: 10.1109/ICIT52682.2021.9491631.

L. Alzubaidi et al., Review of deep learning: concepts, CNN architectures, challenges, applications, future directions, vol. 8, no. 1. Springer International Publishing, 2021. doi: 10.1186/s40537-021-00444-8.

C. L. Fan and Y. J. Chung, “Design and Optimization of CNN Architecture to Identify the Types of Damage Imagery,” Mathematics, vol. 10, no. 19, 2022, doi: 10.3390/math10193483.

A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A Survey of the Recent Architectures of Deep Convolutional Neural Networks,” Artif. Intell. Rev., vol. 53, no. 8, pp. 5455–5516, 2020, doi: 10.1007/s10462-020-09825-6.

M. R. Alwanda, R. Putra, K. Ramadhan, D. Alamsyah, P. Studi, and T. Informatika, “Implementasi Metode Convolutional Neural Network Menggunakan Arsitektur LeNet-5 untuk Pengenalan Doodle,” J. Algoritm., vol. 1, no. 1, 2020, doi: doi.org/10.35957/algoritme.v1i1.434.

R. Nirthika and S. Manivannan, “Pooling in convolutional neural networks for medical image analysis?: a survey and an empirical study,” Neural Comput. Appl., vol. 34, no. 7, pp. 5321–5347, 2022, doi: 10.1007/s00521-022-06953-8.

M. A. Saleem, N. Senan, F. Wahid, M. Aamir, A. Samad, and M. Khan, “Comparative Analysis of Recent Architecture of Convolutional Neural Network,” vol. 2022, 2022, doi: doi.org/10.1155/2022/7313612.

Downloads

Published

2023-06-28

Issue

Section

Article

Citation Check

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.