Comparative Analysis of Machine Learning-based Forest Fire Characteristics in Sumatra and Borneo

Authors

  • Ayu Shabrina School of Computing, Telkom University, Bandung, Indonesia, Indonesia
  • Intan Nuni Wahyuni Reseach Center for Computing, The National Research and Innovation Agency of Indonesia, Indonesia
  • Arnida L Latifah 1) Reseach Center for Computing, The National Research and Innovation Agency of Indonesia 2) School of Computing, Telkom University, Bandung, Indonesia, Indonesia

DOI:

https://doi.org/10.15575/join.v8i1.1035

Keywords:

Carbon emission, Climate, Prediction, Random forest, Regressor

Abstract

Sumatra and Borneo are areas consisting of rainforests with a high vulnerability to fire. Both areas are in the tropics which experience rainy and dry seasons annually. The long dry season such as in 2019 triggered forest and land fires in Borneo and Sumatra, causing haze disasters in the exposed areas. This indicates that climate variables play a role in burning forests and land in Borneo and Sumatra, but how climate affects the fires in both areas is still questionable. This study investigates the climate variables: temperature, humidity, precipitation, and wind speed in relation to the fire’s characteristics in Borneo and Sumatra. We use the Random Forest model to determine the characteristics of forest fires in Sumatra and Borneo based on the climate variables and carbon emission levels. According to the model, the fire event in Sumatra is slightly better predicted than in Borneo, indicating a climate-fire dependence is more prominent in Sumatra. Nevertheless, a maximum temperature variable is seemingly an important indicator for forest and land fire in both domains as it gives the largest contribution to the carbon emission.

References

Van Der Werf, G. R., Randerson, J. T., Giglio, L., Van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., Van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S. 2017. “Global fire emissions estimates during 1997-2016.” Earth System Science Data, 9(2): 697–720. https://doi.org/10.5194/essd-9-697-2017

Bajocco, S., Ceccarelli, T., Smiraglia, D., Salvati, L., and Ricotta, C. 2016. “Modeling the ecological niche of long-term land use changes: The role of biophysical factors.” Ecological Indicators, 60: 231–236. https://doi.org/10.1016/j.ecolind.2015.06.034

Kalabokidis, K., Palaiologou, P., Gerasopoulos, E., Giannakopoulos, C., Kostopoulou, E., and Zerefos, C. 2015. “Effect of climate change projections on forest fire behavior and values-at-risk in southwestern Greece.” Forests, 6(6): 2214–2240. https://doi.org/10.3390/f6062214

Hidayati, I.C., Nalaratih, N., Shabrina, A., Wahyuni, I.N., Latifah, A.L. 2020. Correlation of climate variability and burned area in Borneo using Clustering Methods. Forest and Society, 4(2): 280-293

Nurdiati, Sri, Sopaheluwakan, A., and Septiawan, P. 2021. “Spatial and Temporal Analysis of El Niño Impact on Land and Forest Fire in Kalimantan and Sumatra.” Agromet, 35(1): 1–10. https://doi.org/10.29244/j.agromet.35.1.1-10

Field, R. D., Van Der Werf, G. R., Fanin, T., Fetzer, E. J., Fuller, R., Jethva, H., Levy, R., Livesey, N. J., Luo, M., Torres, O., and Worden, H. M. 2016. “Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought.” Proceedings of the National Academy of Sciences of the United States of America, 113(33): 9204–9209. https://doi.org/10.1073/pnas.1524888113

Nurdiati, S., Sopaheluwakan, A., Agustina, A., and Septiawan, P. 2019. “Multivariate analysis on Indonesian forest fire using combined empirical orthogonal function and covariance matrices.” IOP Conference Series: Earth and Environmental Science, 299(1). https://doi.org/10.1088/1755-1315/299/1/012048

Nurdiati, Sri, Sopaheluwakan, A., Julianto, M. T., Septiawan, P., and Rohimahastuti, F. 2021. “Modelling and analysis impact of El Nino and IOD to land and forest fire using polynomial and generalized logistic function: cases study in South Sumatra and Kalimantan, Indonesia.” Modeling Earth Systems and Environment, 0123456789. https://doi.org/10.1007/s40808-021-01303-4

Kanga, S., Kumar, S., and Singh, S. K. 2017. “Climate induced variation in forest fire using Remote Sensing and GIS in Bilaspur District of Himachal Pradesh.” International Journal of Engineering and Computer Science. https://doi.org/10.18535/ijecs/v6i6.23

Miettinen, J., Shi, C., and Liew, S. C. 2017. “Fire Distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with Special Emphasis on Peatland Fires.” Environmental Management, 60(4): 747–757. https://doi.org/10.1007/s00267-017-0911-7

Hayasaka, H., Noguchi, I., Putra, E. I., Yulianti, N., and Vadrevu, K. 2014. “Peat-fire-related air pollution in Central Kalimantan, Indonesia.” Environmental Pollution (Barking, Essex?: 1987), 195: 257–266. https://doi.org/10.1016/j.envpol.2014.06.031

Kim, P. S., Jacob, D. J., Mickley, L. J., Koplitz, S. N., Marlier, M. E., DeFries, R. S., Myers, S. S., Chew, B. N., and Mao, Y. H. 2015. “Sensitivity of population smoke exposure to fire locations in Equatorial Asia.” Atmospheric Environment, 102(June 2013): 11–17. https://doi.org/10.1016/j.atmosenv.2014.09.045

Andela, N., and Van Der Werf, G. R. 2014. “Recent trends in African fires driven by cropland expansion and El Niño to la Niña transition.” Nature Climate Change, 4(9): 791–795. https://doi.org/10.1038/nclimate2313

Nowacki, G. J., and Abrams, M. D. 2008. “The demise of fire and “mesophication” of forests in the eastern United States.” BioScience, 58(2): 123–138. https://doi.org/10.1641/B580207

Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D’Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C., Pyne, S. J. 2009. “Fire in the earth system.” Science, 324(5926): 481–484. https://doi.org/10.1126/science.1163886

Sumarga, E. 2017. “Spatial indicators for human activities may explain the 2015 fire hotspot distribution in central Kalimantan Indonesia.” Tropical Conservation Science, 10. https://doi.org/10.1177/1940082917706168

Sze, J. S., Jefferson, and Lee, J. S. H. 2019. “Evaluating the social and environmental factors behind the 2015 extreme fire event in Sumatra, Indonesia.” Environmental Research Letters, 14(1): 15001. https://doi.org/10.1088/1748-9326/aaee1d

Latifah, A. L., Shabrina, A., Wahyuni, I. N., and Sadikin, R. 2020. “Evaluation of Random Forest model for forest fire prediction based on climatology over Borneo.” 2019 International Conference on Computer, Control, Informatics and Its Applications: Emerging Trends in Big Data and Artificial Intelligence, IC3INA 2019, 4–8. https://doi.org/10.1109/IC3INA48034.2019.8949588

Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A., and Pereira, J. M. C. 2012. “Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest.” Forest Ecology and Management, 275: 117–129. https://doi.org/10.1016/j.foreco.2012.03.003

Gigovi?, L., Pourghasemi, H. R., Drobnjak, S., and Bai, S. 2019. “Testing a new ensemble model based on SVM and random forest in forest fire susceptibility assessment and its mapping in Serbia’s Tara National Park.” Forests, 10(5). https://doi.org/10.3390/f10050408

Ma, W., Feng, Z., Cheng, Z., Chen, S., and Wang, F. 2020. “Identifying forest fire driving factors and related impacts in china using random forest algorithm.” Forests, 11(5). https://doi.org/10.3390/F11050507

Wahyuni, I. N., Shabrina, A., and Latifah, A. L. 2021. “Investigating Multivariable Factors of Southern Borneo Forest and Land Fire based on Random Forest Model.” 2021 International Conference on Computer, Control, Informatics and Its Applications. (October 2021): 71-75. https://doi.org/10.1145/3489088.3489115

Margono, B. A., Turubanova, S., Zhuravleva, I., Potapov, P., Tyukavina, A., Baccini, A., Goetz, S., and Hansen, M. C. 2012. “Mapping and monitoring deforestation and forest degradation in Sumatra (Indonesia) using Landsat time series data sets from 1990 to 2010.“ Environmental Research Letters, 7(3). https://doi.org/10.1088/1748-9326/7/3/034010

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., and Thépaut, J. N. 2020. “The ERA5 global reanalysis.” Quarterly Journal of the Royal Meteorological Society, 146(730): 1999–2049. https://doi.org/10.1002/qj.3803

Breiman, L. 2001. “Random Forest.” Machine Learning. 45(1): 5 - 32.

Aldrian, E., and Susanto, R. D. 2003. “Identification of three dominant rainfall regions within Indonesia and Their relationship to sea surface temperature.” International Journal of Climatology, 23(12): 1435 - 1452. https://doi.org/10.1002/joc.950

Downloads

Published

2023-06-28

Issue

Section

Article

Citation Check

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.