Land Cover Classification in Mountainous Regions Using Multi-Scale Fusion and Convolutional Neural Networks: A Case Study on Mount Slamet
DOI:
https://doi.org/10.15575/join.v10i2.1612Keywords:
CNN, DenseNet121, Guided Filter, Land Cover Classification, MobileNetV2, Multi-Scale Fusion, VGG-16Abstract
References
[1] R. W. Van Bemmelen, “The Geology of Indonesia. General Geology of Indonesia and Adjacent Archipelagoes,” 1949.
[2] I. Maryanto, M. Noerdjito, and T. Partomihardjo, Ekologi Gunung Slamet, no. January 2012. 2016.
[3] A. C. Anissa, E. F. Rini, and S. Soedwiwahjono, “Analisis perbandingan perubahan tutupan lahan menggunakan Citra Satelit Landsat 8 di Kecamatan Tawangmangu,” Reg. J. Pembang. Wil. dan Perenc. Partisipatif, vol. 19, no. 1, p. 184, 2024, doi: 10.20961/region.v19i1.66929.
[4] Basuki, B. Hermiyanto, and S. A. Budiman, “Identifikasi Dan Estimasi Kerusakan Tanah Dengan Metode Berbasis Obia Citra Satelit Sentinel-2b Dan Pembobotan Lereng Gunung Raung,” vol. 11, no. 1, pp. 56–72, 2023, doi: 10.29303/jrpb.v11i1.443.
[5] B. Aprilia, “Analisis Perubahan Penggunaan Lahan Kawasan Lindung Sekitar Gunung Slamet, Kabupaten Banyumas Tahun 2008 & 2019,” pp. 2019–2020, 2020.
[6] J. R. Jensen, Introductory Digital Image Processing A Remote Sensing Perspective. 2015.
[7] M. Fayaz, J. Nam, L. M. Dang, H. Song, and H. Moon, “Land-Cover Classification Using Deep Learning with High-Resolution Remote-Sensing Imagery,” no. Lc, pp. 1–15, 2024.
[8] S. Talukdar et al., “Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review,” 2020.
[9] I. Daqiqil, “Machine Learning: Teori, Studi Kasus, dan Implementasi Menggunakan Phyton,” 2021.
[10] C. A. S. Kinasih and H. Hidayat, “Ekstraksi Data Bangunan Dari Data Citra Unmanned Aerial Vehicle Menggunakan Metode Convolutional Neural Networks (CNN) (Studi Kasus: Desa Campurejo, Kabupaten Gresik),” Geoid, vol. 17, no. 1, p. 81, 2022, doi: 10.12962/j24423998.v17i1.10289.
[11] R. Venkatesan and B. Li, Convolutional Neural Networks in Visual Computing : A Concise Guide. 2017.
[12] Q. Liu, B. Wang, S. Tan, S. Zou, and W. Ge, “Remote Sensing Image Dehazing Using Multi-Scale Gated Attention for Flight Simulator,” IEICE Trans. Inf. Syst., vol. E107.D, no. 9, pp. 1206–1218, 2024, doi: 10.1587/transinf.2023EDP7191.
[13] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: BEYOND EMPIRICAL RISK MINIMIZATION,” Iclr, no. March, pp. 1–8, 2018.
[14] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN Features Off-the-Shelf: An Astounding Baseline for Recognition,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014, pp. 512–519. doi: 10.1109/CVPRW.2014.131.
[15] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520. doi: 10.1109/CVPR.2018.00474.
[16] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional Networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2261–2269. doi: 10.1109/CVPR.2017.243.
[17] P. Helber, B. Bischke, A. Dengel, and D. Borth, “EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 12, no. 7, pp. 2217–2226, 2019, doi: 10.1109/JSTARS.2019.2918242.
[18] Geetha, A. G. Karegowda, Nandeesha, and N. B. V, “Classification of Sentinel 2 Images using Customized Convolution Neural Networks,” Orig. Res. Pap. Int. J. Intell. Syst. Appl. Eng. IJISAE, vol. 2023, no. 1s, pp. 136–142, 2023, [Online]. Available: www.ijisae.org
[19] M. Ba, P. I. Thiam, E. Delay, C. A. Ngom, I. Diop, and A. Bah, “Deep Learning-based Land Use and Land Cover Changes Detection from Satellite Imagery : a case study of the city of Richard Toll,” ACM Int. Conf. Proceeding Ser., pp. 60–68, 2024, doi: 10.1145/3653946.3653956.
[20] S. Basheer, X. Wang, R. A. Nawaz, T. Pang, T. Adekanmbi, and M. Q. Mahmood, “A comparative analysis of PlanetScope 4-band and 8-band imageries for land use land cover classification,” Geomatica, vol. 76, no. 2, p. 100023, 2024, doi: 10.1016/j.geomat.2024.100023.
[21] S. S. Burrewar, M. Haque, and T. U. Haider, “Convolutional Neural Network Methods for Detecting Land-Use Changes,” Int. J. Intell. Syst. Appl. Eng., vol. 12, no. 14s, pp. 573–590, 2024.
[22] ESA, “Sentinel-2 Mission (European Space Agency).” [Online]. Available: https://sentinel.esa.int/web/sentinel/missions/sentinel-2
[23] A. Asokan, J. Anitha, M. Ciobanu, A. Gabor, A. Naaji, and D. J. Hemanth, “Image processing techniques for analysis of satellite images for historical maps classification-An overview,” Appl. Sci., vol. 10, no. 12, 2020, doi: 10.3390/app10124207.
[24] L. A. Santos, K. R. Ferreira, G. Camara, M. C. A. Picoli, and R. E. Simoes, “Quality control and class noise reduction of satellite image time series,” ISPRS J. Photogramm. Remote Sens., vol. 177, no. May, pp. 75–88, 2021, doi: 10.1016/j.isprsjprs.2021.04.014.
[25] M. Yao, Q. Miao, and Q. Hao, “Image Dehazing Method Based on Multi-scale Feature Fusion,” vol. 119, no. Essaeme, pp. 2163–2166, 2017, doi: 10.2991/essaeme-17.2017.438.
[26] A. Codruta and C. Ancuti, “Single Image Dehazing by Multi-Scale Fusion,” IEEE Trans. Image Process., vol. 22, 2013, doi: 10.1109/TIP.2013.2262284.
[27] K. He, J. Sun, and X. Tang, “Guided Image Filtering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 6, pp. 1397–1409, 2013, doi: 10.1109/TPAMI.2012.213.
[28] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J. Big Data, vol. 6, no. 1, 2019, doi: 10.1186/s40537-019-0197-0.
[29] L. Perez and J. Wang, “The Effectiveness of Data Augmentation in Image Classification using Deep Learning,” 2017.
[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” in Advances in Neural Information Processing Systems, F. Pereira, C. J. Burges, L. Bottou, and K. Q. Weinberger, Eds., Curran Associates, Inc., 2012. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
[31] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–14, 2015.
[32] C. Szegedy et al., “Going deeper with convolutions,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–9. doi: 10.1109/CVPR.2015.7298594.
[33] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” 2017, [Online]. Available: http://arxiv.org/abs/1704.04861
[34] D. M. W. Powers, “Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation,” pp. 37–63, 2011, [Online]. Available: http://arxiv.org/abs/2010.16061
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2025 Yulis Rijal Fauzan, Shofwatul 'Uyun

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License