Plant Disease Detection Using Digital Image Processing: Opportunities and Challenges
DOI:
https://doi.org/10.15575/join.v10i2.1330Keywords:
Detection, Digital, Image, Plant, ProcessingAbstract
References
[1] V. Singh, N. Sharma, and S. Singh, “A review of imaging techniques for plant disease detection,” Artif. Intell. Agric., vol. 4, pp. 229–242, 2020, doi: 10.1016/j.aiia.2020.10.002.
[2] N. Gobalakrishnan, K. Pradeep, C. J. Raman, L. J. Ali, and M. P. Gopinath, “A Systematic Review on Image Processing and Machine Learning Techniques for Detecting Plant Diseases,” Proc. 2020 IEEE Int. Conf. Commun. Signal Process. ICCSP 2020, pp. 465–468, 2020, doi: 10.1109/ICCSP48568.2020.9182046.
[3] R. N. Strange and P. R. Scott, “Plant disease: a threat to global food security,” Annu Rev Phytopathol, vol. 43, pp. 83–116, 2005, doi: 10.1146/annurev.phyto.43.113004.133839.
[4] K. Golhani, S. K. Balasundram, G. Vadamalai, and B. Pradhan, “A review of neural networks in plant disease detection using hyperspectral data,” Inf. Process. Agric., vol. 5, no. 3, pp. 354–371, 2018, doi: 10.1016/j.inpa.2018.05.002.
[5] FAO, “Declaration of the world summit on food security,” 2009.
[6] S. Chakraborty and A. C. Newton, “Climate change, plant diseases and food security: An overview,” Plant Pathol., vol. 60, no. 1, pp. 2–14, 2011, doi: 10.1111/j.1365-3059.2010.02411.x.
[7] S. R. M., “Impact of increasing temperature on the fitness of {Fusarium} pseudograminearum causing crown rot in wheat,” 2015. doi: 10.1016/j.proenv.2015.07.250.
[8] A. M. Mutka and R. S. Bart, “Image-based phenotyping of plant disease symptoms,” Front. Plant Sci., vol. 5, no. JAN, Jan. 2015, doi: 10.3389/FPLS.2014.00734/FULL.
[9] I. H. Khan et al., “Early detection of powdery mildew disease and accurate quantification of its severity using hyperspectral images in wheat,” Remote Sens., vol. 13, no. 18, 2021, doi: 10.3390/rs13183612.
[10] M. F. Danilevicz, P. E. Bayer, F. Boussaid, M. Bennamoun, and D. Edwards, “Maize yield prediction at an early developmental stage using multispectral images and genotype data for preliminary hybrid selection,” Remote Sens., vol. 13, no. 19, 2021, doi: 10.3390/rs13193976.
[11] A. P. Tampakaki, E. Hatziloukas, and N. J. Panopoulos, “Plant Pathogens, Bacterial,” in Encyclopedia of Microbiology (Third Edition), Third Edit., M. Schaechter, Ed., Oxford: Academic Press, 2009, pp. 655–677. doi: https://doi.org/10.1016/B978-012373944-5.00346-1.
[12] P. M. M. Martins, M. V. Merfa, M. A. Takita, and A. A. De Souza, “Persistence in phytopathogenic bacteria: Do we know enough?” Front. Microbiol., vol. 9, no. MAY, pp. 1–14, 2018, doi: 10.3389/fmicb.2018.01099.
[13] A. Balla et al., “The threat of pests and pathogens and the potential for biological control in forest ecosystems,” Forests, vol. 12, no. 11, pp. 1–34, 2021, doi: 10.3390/f12111579.
[14] G. N. AGRIOS, “chapter one - INTRODUCTION,” in Plant Pathology (Fifth Edition), Fifth Edit., G. N. AGRIOS, Ed., San Diego: Academic Press, 2005, pp. 3–75. doi: https://doi.org/10.1016/B978-0-08-047378-9.50007-5.
[15] J. G. A. Barbedo, “A review on the main challenges in automatic plant disease identification based on visible range images,” Biosyst. Eng., vol. 144, pp. 52–60, 2016, doi: 10.1016/j.biosystemseng.2016.01.017.
[16] R. Sudhesh, V. Nagalakshmi, and A. Amirthasaravanan, “A systematic study on disease recognition, categorization, and quantification in agricultural plants using image processing,” 2019 IEEE Int. Conf. Syst. Comput. Autom. Netw. ICSCAN 2019, pp. 1–5, 2019, doi: 10.1109/ICSCAN.2019.8878816.
[17] J. G. A. Barbedo, L. V. Koenigkan, and T. T. Santos, “Identifying multiple plant diseases using digital image processing,” Biosyst. Eng., vol. 147, pp. 104–116, 2016, doi: 10.1016/j.biosystemseng.2016.03.012.
[18] J. Barbedo, “An automatic method to detect and measure leaf disease symptoms using digital image processing,” Am Phytopath Soc., vol. 98, no. 12, pp. 1709–1716, 2014, doi: 10.1094/PDIS-03-14-0290-RE.
[19] L. Liu et al., “A Disease Index for Efficiently Detecting Wheat Fusarium Head Blight Using Sentinel-2 Multispectral Imagery,” IEEE Access, vol. 8, pp. 52181–52191, 2020.
[20] P. Mishra, G. Polder, and N. Vilfan, “Close range spectral imaging for disease detection in plants using autonomous platforms: a review on recent studies,” 2020, Springer. doi: 10.1007/s43154-020-00004-7.
[21] A. Sharma, K. Lakhwani, and H. Singh Janeja, “Plant Disease Identification Using Deep Learning: A Systematic Review,” Proc. 2021 2nd Int. Conf. Intell. Eng. Manag. ICIEM 2021, pp. 222–227, 2021, doi: 10.1109/ICIEM51511.2021.9445277.
[22] K. Nagasubramanian, S. Jones, A. K. Singh, S. Sarkar, A. Singh, and B. Ganapathysubramanian, “Plant disease identification using explainable 3D deep learning on hyperspectral images,” Plant Methods, vol. 15, no. 1, Aug. 2019, doi: 10.1186/S13007-019-0479-8.
[23] A. Kulkarni and A. Patil, “Applying image processing technique to detect plant diseases,” Int. J. Mod. Eng. Res., vol. 2, no. 5, pp. 3661–3664, 2012.
[24] M. A. Jasim and J. M. AL-Tuwaijari, “Plant leaf diseases detection and classification using image processing and deep learning techniques,” 2020 Int. Conf. Comput. Sci. Softw. Eng. CSASE, pp. 259–265, 2020.
[25] J. Sun, Y. Yang, X. He, and X. Wu, “Northern maize leaf blight detection under complex field environment based on deep learning,” IEEE Access, vol. 8, pp. 33679–33688, 2020.
[26] A. Sinha and R. S. Shekhawat, “Review of image processing approaches for detecting plant diseases,” IET Image Process., vol. 14, no. 8, pp. 1427–1439, 2020.
[27] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for image-based plant disease detection,” 2016, frontiersin.org.
[28] L. J. Francl, “The disease triangle: a plant pathological paradigm revisited,” Plant Health Instr., vol. 10, 2001.
[29] B. Buchanan, W. Gruissem, and R. Jones, Biochemistry and molecular biology of plants. Biochemistry and molecular biology of plants. John wiley & sons., 2015.
[30] Z. B. Husin, A. Shakaff, A. Aziz, and ..., “Feasibility study on plant chili disease detection using image processing techniques,” … Intell. Syst. …, 2012.
[31] “plant disease - Symptoms and signs | Britannica.”
[32] G. Hariharan and K. Prasannath, “Recent Advances in Molecular Diagnostics of Fungal Plant Pathogens: A Mini Review,” Front. Cell. Infect. Microbiol., vol. 10, no. January, pp. 1–14, 2021, doi: 10.3389/fcimb.2020.600234.
[33] A. Tkacz et al., “Agricultural Selection of Wheat Has Been Shaped by Plant-Microbe Interactions,” Front. Microbiol., vol. 11, no. February, pp. 0–9, 2020, doi: 10.3389/fmicb.2020.00132.
[34] J. Wäldchen and P. Mäder, Plant Species Identification Using Computer Vision Techniques: A Systematic Literature Review, vol. 25, no. 2. Springer Netherlands, 2018. doi: 10.1007/s11831-016-9206-z.
[35] N. Valliammal and S. N. Geethalakshmi, “Automatic recognition system using preferential image segmentation for leaf and flower images,” Comput. Sci. Eng., vol. 1, no. 4, p. 13, 2011, doi: 10.5121/cseij.2011.1402.
[36] P. J. D. Weeks, M. A. O’Neill, K. J. Gaston, and I. D. Gauld, “Automating insect identification: exploring the limitations of a prototype system,” J. Appl. Entomol., vol. 123, no. 1, pp. 1–8, Apr. 1999, doi: 10.1098/RSTB.2003.1442.
[37] A. Joly et al., “Lifeclef: Multimedia life species identification,” EMR Environ. Multimed. Retr., vol. 1222, pp. 7–13, 2014.
[38] A. Thuille, M. Seeland, M. Rzanny, and S. Ernst Detlef, “Flora Incognita–Halbautomatische Bestimmung der Pflanzenarten Thüringens mit dem Smartphone,” Landschaftspflege Naturschutz Thüring., vol. 53, no. 3, pp. 121–125, 2016.
[39] S. Kumar and R. Kaur, “Plant disease detection using image processing-a review,” 2015, researchgate.net.
[40] R. C. Gonzalez and R. E. Woods, 4TH EDITION Digital image processing. 2018.
[41] J. Chaki and N. Dey, A Beginner’s Guide to Image Preprocessing Techniques. CRC Press Taylor & Francis Group, 2019.
[42] S. Chouhan, A. Kaul, U. Singh, and S. Jain, “Bacterial foraging optimization based radial basis function neural network (BRBFNN) for identification and classification of plant leaf diseases: An automatic approach,” IEEE Access, vol. 6, pp. 8852–8863, 2018.
[43] M. Nixon and A. S. Aguado, Feature Extraction & Image Processing for Computer Vision. 2012. doi: 10.1016/C2011-0-06935-1.
[44] S. N. Ghaiwat and P. Arora, “Cotton leaf disease detection by feature extraction,” Res. Adv. Integr. Big …, 2016.
[45] D. Al Bashish, M. Braik, and S. Bani-Ahmad, “Detection and classification of leaf diseases using K-means-based segmentation and,” 2011, academia.edu.
[46] K. P. Ferentinos, “Deep learning models for plant disease detection and diagnosis,” Comput. Electron. Agric., 2018.
[47] M. A. Khan, T. Akram, M. Sharif, M. Alhaisoni, T. Saba, and N. Nawaz, “A probabilistic segmentation and entropy-rank correlation-based feature selection approach for the recognition of fruit diseases,” Eurasip J. Image Video Process., vol. 2021, no. 1, 2021, doi: 10.1186/s13640-021-00558-2.
[48] H. Hamdani, A. Septiarini, A. Sunyoto, S. Suyanto, and F. Utaminingrum, “Detection of oil palm leaf disease based on color histogram and supervised classifier,” Optik, vol. 245, no. May, p. 167753, 2021, doi: 10.1016/j.ijleo.2021.167753.
[49] H. Ali, M. I. Lali, M. Z. Nawaz, M. Sharif, and B. A. Saleem, “Symptom based automated detection of citrus diseases using color histogram and textural descriptors,” Comput. Electron. Agric., vol. 138, pp. 92–104, 2017.
[50] M. Sharif, M. A. Khan, Z. Iqbal, M. F. Azam, M. I. U. Lali, and ..., “Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection,” … Electron. …, 2018.
[51] X. E. Pantazi, D. Moshou, and A. A. Tamouridou, “Automated leaf disease detection in different crop species through image features analysis and {One} {Class} {Classifiers},” Comput. Electron. Agric., vol. 156, no. November 2018, pp. 96–104, 2019, doi: 10.1016/j.compag.2018.11.005.
[52] L. Kumar and D. K. Singh, “Analyzing Computational Response and Performance of Deep Convolution Neural Network for Plant Disease Classification using Plant Leave Dataset,” pp. 549–553, 2021, doi: 10.1109/csnt51715.2021.9509632.
[53] L. C. Ngugi, M. Abelwahab, and M. Abo-Zahhad, “Recent advances in image processing techniques for automated leaf pest and disease recognition – {A} review,” Inf. Process. Agric., vol. 8, no. 1, pp. 27–51, 2021, doi: 10.1016/j.inpa.2020.04.004.
[54] E. L. M. Jr and T. D. Palaoag, “Rice pest and disease detection using convolutional neural network,” … 2018 Int. Conf. …, 2018, doi: 10.1145/3209914.3209945.
[55] A. Hanson, M. G. Joel, A. Joy, and J. Francis, “Plant leaf disease detection using deep learning and convolutional neural network,” 2017.
[56] V. Prashanthi and K. Srinivas, “Plant disease detection using Convolutional neural networks,” 2020, academia.edu.
[57] A. Abbas, S. Jain, M. Gour, and S. Vankudothu, “Tomato plant disease detection using transfer learning with C-GAN synthetic images,” Comput. Electron. …, vol. 187, p. 106279, 2021.
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2025 Leni Fitriani, Dini Destiani Siti Fatimah, Dewi Tresnawati

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License







