Enchancing Lung Disease Classification through K-Means Clustering, Chan-Vese Segmentation, and Canny Edge Detection on X-Ray Segmented Images
DOI:
https://doi.org/10.15575/join.v9i1.1178Keywords:
Canny, Chan-Vese, K-Means Clustering, Lungs, Segmentation, X-Ray ImageAbstract
References
Niederman, M. S., & Cilloniz, C. (2022). Aspiration pneumonia. Revista Espanola de Quimioterapia, 35. https://doi.org/10.37201/req/s01.17.2022
Smithard, D. G., & Yoshimatsu, Y. (2022). Pneumonia, Aspiration Pneumonia, or Frailty-Associated Pneumonia? Geriatrics (Switzerland), 7(5). https://doi.org/10.3390/geriatrics7050115
Natarajan, A., Beena, P. M., Devnikar, A. V., & Mali, S. (2020). A systemic review on tuberculosis. In Indian Journal of Tuberculosis (Vol. 67, Issue 3). https://doi.org/10.1016/j.ijtb.2020.02.005
Kiani, D. (2023). X-Ray Diffraction (XRD). In Springer Handbooks. https://doi.org/10.1007/978-3-031-07125-6_25
Patil, B. M., & Burkpalli, V. (2022). Segmentation of cotton leaf images using a modified chan vese method. Multimedia Tools and Applications, 81(11). https://doi.org/10.1007/s11042-022-12436-8
Song, J., Pan, H., Liu, W., Xu, Z., & Pan, Z. (2021). The Chan-Vese Model with Elastica and Landmark Constraints for Image Segmentation. IEEE Access, 9. https://doi.org/10.1109/ACCESS.2020.3047848
Wang, Z., Wang, K., Yang, F., Pan, S., & Han, Y. (2018). Image segmentation of overlapping leaves based on Chan–Vese model and Sobel operator. Information Processing in Agriculture, 5(1). https://doi.org/10.1016/j.inpa.2017.09.005
Zheng, D., Bao, C., Shi, Z., Ling, H., & Ma, K. (2022). Unsupervised Deep Learning Meets Chan-Vese Model. CSIAM Transactions on Applied Mathematics, 3(4). https://doi.org/10.4208/csiam-am.SO-2021-0049
Sekehravani, E. A., Babulak, E., & Masoodi, M. (2020). Implementing canny edge detection algorithm for noisy image. Bulletin of Electrical Engineering and Informatics, 9(4). https://doi.org/10.11591/eei.v9i4.1837
Pradeep Kumar Reddy, R., & Nagaraju, C. (2019). Improved canny edge detection technique using S-membership function. International Journal of Engineering and Advanced Technology, 8(6). https://doi.org/10.35940/ijeat.E7419.088619
Huang, M., Liu, Y., & Yang, Y. (2022). Edge detection of ore and rock on the surface of explosion pile based on improved Canny operator. Alexandria Engineering Journal, 61(12). https://doi.org/10.1016/j.aej.2022.04.019
Pratiwi, E. H., & Juniati, D. (2022). CLUSTERING OF LUNG DISEASE BASED ON CHEST X-RAY USING DIMENSIONS FRACTAL BOX COUNTING AND K-MEDOIDS. Jurnal Riset Dan Aplikasi Matematika (JRAM), 6(1), 1–12. https://doi.org/10.26740/JRAM.V6N1.P1-12
Bookstaver, M. (2021). Secondary Data Analysis. In The Encyclopedia of Research Methods in Criminology and Criminal Justice: Volume II: Parts 5-8. https://doi.org/10.1002/9781119111931.ch107
Ferreira, W. D., Ferreira, C. B. R., da Cruz Júnior, G., & Soares, F. (2020). A review of digital image forensics. Computers and Electrical Engineering, 85. https://doi.org/10.1016/j.compeleceng.2020.106685
Sundani, D., Widiyanto, S., Karyanti, Y., & Wardani, D. T. (2019). Identification of image edge using quantum canny edge detection algorithm. Journal of ICT Research and Applications, 13(2). https://doi.org/10.5614/itbj.ict.res.appl.2019.13.2.4
Sinaga, K. P., & Yang, M. S. (2020). Unsupervised K-means clustering algorithm. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.2988796
Rao, B. S. (2020). Dynamic Histogram Equalization for contrast enhancement for digital images. Applied Soft Computing Journal, 89. https://doi.org/10.1016/j.asoc.2020.106114
Baskar, A., Rajappa, M., Vasudevan, S. K., & Murugesh, T. S. (2023). Digital Image Processing. In Digital Image Processing. https://doi.org/10.1201/9781003217428
Agrawal, S., Panda, R., Mishro, P. K., & Abraham, A. (2022). A novel joint histogram equalization based image contrast enhancement. Journal of King Saud University - Computer and Information Sciences, 34(4). https://doi.org/10.1016/j.jksuci.2019.05.010
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2024 Joko Riyono, Christina Eni Pujiastuti, Sopia Debi Puspa, Supriyadi, Fayza Nayla Riyani Putri
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License