Detection of Drowsiness in Drivers Using Image Processing and Support Vector Machine (SVM) Classification
DOI:
https://doi.org/10.15575/join.v9i2.1076Keywords:
Artificial Intelligence, Classification, Drowsiness Detection, Machine Learning, Support Vector MachineAbstract
Accidents can be caused by external factors on the road, vehicle conditions, or internal factors such as drowsiness. Drowsiness while driving poses risks to the driver and others. An early detection system is crucial to alert drivers to stop or rest if they show signs of drowsiness. Physical signs of drowsiness include a lethargic facial expression, frequent eye blinking, continuous yawning, or nodding off. A detection system utilizing image processing and machine learning can observe these signs by detecting facial landmarks and analyzing activities such as eye blinking, yawning, and head tilt. This study aims to classify the drowsiness condition based on these three factors. The classification process is conducted using machine learning with the Support Vector Machine (SVM) method to determine whether a person is drowsy or not. The dataset consists of the number of eye blinks, head tilts, and yawns. Conditions are classified into two classes, drowsy and not drowsy. In this study, the SVM classification method can predict drowsiness with an accuracy of up to 77% in the conducted tests.
References
[1] G. Gloria, ‘Pakar UGM Sebut Empat Faktor Penyebab Kecelakaan di Jalan Tol | Universitas Gadjah Mada’. Accessed: May 19, 2023. [Online]. Available: https://ugm.ac.id/id/berita/21920-pakar-ugm-sebut-empat-faktor-penyebab-kecelakaan-di-jalan-tol
[2] C. Aj. Saputra, D. Erwanto, and P. N. Rahayu, ‘Deteksi Kantuk Pengendara Roda Empat Menggunakan Haar Cascade Classifier Dan Convolutional Neural Network’, J. Electr. Eng. Comput. JEECOM, vol. 3, no. 1, Art. no. 1, Apr. 2021, doi: 10.33650/jeecom.v3i1.1510.
[3] A. H. A. P. Perdana, S. T. Rasmana, and H. Pratikno, ‘Implementasi Sistem Deteksi Mata Kantuk Berdasarkan Facial Landmarks Detection Menggunakan Metode Regression Trees’, J. Technol. Inform. JoTI, vol. 1, no. 1, Art. no. 1, Oct. 2019, doi: 10.37802/joti.v1i1.1.
[4] A. Alfandianto, C. E. Suharyanto, and F. N. D. Prasasti, ‘Analisis Regresi Linier Guna Mengetahui Pengaruh Tingkat Kematian Kecelakaan Lalu Lintas Terhadap Faktor Mabuk’, SAINTEK J. Ilm. Sains Dan Teknol. Ind., vol. 5, no. 1, Art. no. 1, Jul. 2021, doi: 10.32524/saintek.v5i1.246.
[5] PT VIVA MEDIA BARU- VIVA, ‘KNKT: 80 Persen Kecelakaan di Tol Akibat Mengantuk dan Letih’. Accessed: May 23, 2023. [Online]. Available: https://www.viva.co.id/berita/nasional/1427758-knkt-80-persen-kecelakaan-di-tol-akibat-mengantuk-dan-letih
[6] P. KOMINFO, ‘Rata-rata Tiga Orang Meninggal Setiap Jam Akibat Kecelakaan Jalan’, Website Resmi Kementerian Komunikasi dan Informatika RI. Accessed: May 08, 2024. [Online]. Available: http:///content/detail/10368/rata-rata-tiga-orang-meninggal-setiap-jamakibat-kecelakaan-jalan/0/artikel_gpr
[7] S. Sugeng and A. Mulyana, ‘Sistem Absensi Menggunakan Pengenalan Wajah (Face Recognition) Berbasis Web LAN’, J. Sisfokom Sist. Inf. Dan Komput., vol. 11, no. 1, Art. no. 1, Apr. 2022, doi: 10.32736/sisfokom.v11i1.1371.
[8] S. I. Lestariningati, A. B. Suksmono, I. J. M. Edward, and K. Usman, ‘Group Class Residual ℓ1-Minimization on Random Projection Sparse Representation Classifier for Face Recognition’, Electronics, vol. 11, no. 17, Art. no. 17, Jan. 2022, doi: 10.3390/electronics11172723.
[9] M. A. Prastya, ‘SISTEM PENGENALAN WAJAH MANUSIA MENGGUNAKAN ALGORITMA VIOLA-JONES DAN PRINCIPAL COMPONENT ANALYSIS’, Ubiquitous Comput. Its Appl. J., vol. 2, no. 2, Art. no. 2, Dec. 2019, doi: 10.51804/ucaiaj.v2i2.85-92.
[10] D. Erwan, Y. Apridiansyah, E. D. Putra, and U. Juhardi, ‘Algoritma Haar Cascade Deteksi WajahMenggunakan Phyton’, JUKOMIKA J. Ilmu Komput. Dan Inform., vol. 5, no. 2, Art. no. 2, Jan. 2023, doi: 10.54650/jukomika.v5i2.461.
[11] V. Bazarevsky, Y. Kartynnik, A. Vakunov, K. Raveendran, and M. Grundmann, ‘BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs’. arXiv, Jul. 14, 2019. doi: 10.48550/arXiv.1907.05047.
[12] D. C. J. M. Pardede, A. M. Rumagit, and S. T. G. Kaunang, ‘Deteksi Pengendara Mengantuk Menggunakan Metode Eye Tracking Berbasis Rasberry Pi’. Accessed: May 08, 2024. [Online]. Available: http://repo.unsrat.ac.id/3581/
[13] V. I. Santoso, G. Virginia, and Y. Lukito, ‘PENERAPAN SENTIMENT ANALYSIS PADA HASIL EVALUASI DOSEN DENGAN METODE SUPPORT VECTOR MACHINE’, J. Transform., vol. 14, no. 2, Art. no. 2, Jan. 2017, doi: 10.26623/transformatika.v14i2.439.
[14] R. Rizal, I. Girsang, and S. Prasetiyo, ‘Klasifikasi Wajah Menggunakan Support Vector Machine (SVM)’, REMIK Ris. Dan E-J. Manaj. Inform. Komput., vol. 3, p. 1, Mar. 2019, doi: 10.33395/remik.v3i2.10080.
[15] D. H. Fudholi, R. A. N. Nayoan, M. Suyuti, and R. Rahmadi, ‘Deteksi Indikasi Kelelahan Menggunakan Deep Learning’, J-SAKTI J. Sains Komput. Dan Inform., vol. 5, no. 1, Art. no. 1, Mar. 2021, doi: 10.30645/j-sakti.v5i1.292.
[16] R. T. Puteri and F. Utaminingrum, ‘Deteksi Kantuk Menggunakan Kombinasi Haar Cascade dan Convolutional Neural Network’, J. Pengemb. Teknol. Inf. Dan Ilmu Komput., vol. 4, no. 3, Art. no. 3, Jun. 2020.
[17] Dewi Amalia and Fitri Utaminingrum, ‘Deteksi Kantuk pada Pengemudi melalui Jumlah Kedipan Mata Menggunakan Facial Landmark berbasis Intel NUC | Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer’. Accessed: May 23, 2023. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/10283
[18] Mediapipe, ‘MediaPipe’, Google for Developers. Accessed: May 19, 2023. [Online]. Available: https://developers.google.com/mediapipe
[19] ‘A comprehensive survey on support vector machine classification: Applications, challenges and trends’, Neurocomputing, vol. 408, pp. 189–215, Sep. 2020, doi: 10.1016/j.neucom.2019.10.118.
[20] R. Berwick, ‘An Idiot’s guide to Support vector machines (SVMs)’.
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2024 Sugeng, Hendri Praminiarto

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License