The Effect of the Number of Nodes on Data Communication Performance in Nomad Clusters Using the Gossip Protocol

Authors

  • Ridwan Satrio Hadikusuma Master of Electrical Engineering, Universitas Katolik Indonesia Atma Jaya, Jakarta, Indonesia https://orcid.org/0000-0003-1849-7150
  • Veronica Windha Mahyastuty Master of Electrical Engineering, Universitas Katolik Indonesia Atma Jaya, Jakarta, Indonesia https://orcid.org/0000-0003-2344-5830
  • Lukas Master of Electrical Engineering, Universitas Katolik Indonesia Atma Jaya, Jakarta, Indonesia
  • Epril Moh Rizaludin Platform Engineer, PT. Metrocom Global Solusi, Jakarta, Indonesia

DOI:

https://doi.org/10.15575/join.v9i2.1327

Keywords:

Nomad Cluster, Gossip Protocol, Packet Loss, Latency, Throughput

Abstract

This research aims to understand the effect of the number of nodes on the performance of data communication in Nomad clusters using the gossip protocol. Through a series of tests, it can be concluded that data communication performance is greatly affected by the number of nodes in the cluster. Tests were conducted using two clusters, where one cluster consists of three nodes. The results show that when using a cluster with three nodes, no packet loss occurs in all data transmissions performed, indicating a reliable communication system. The average latency in one data communication cycle varied in each test, but generally remained within the acceptable range of below 100ms based on data communication quality of service parameters. CPU and disc usage remained relatively stable throughout the experiment. Although there were slight differences in throughput between clusters, the throughput generally remained above 100 Mbps, which is still in the good category according to the research parameters. These results show the importance of taking into account the number of nodes in the cluster in designing and managing data communication systems in a Nomad cluster environment with the gossip protocol.

References

[1] “Data communications networking with TCPIP protocol suite (Behrouz A. Forouzan) (Z-Library).epub.”

[2] F. B.-U. Team, “Microservices in the Cloud Native Era,” in Cloud-Native Application Architecture: Microservice Development Best Practice, F. B.-U. Team, Ed., Singapore: Springer Nature, 2024, pp. 1–25. doi: 10.1007/978-981-19-9782-2_1.

[3] M. Straesser, J. Mathiasch, A. Bauer, and S. Kounev, “A Systematic Approach for Benchmarking of Container Orchestration Frameworks,” in Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, in ICPE ’23. New York, NY, USA: Association for Computing Machinery, Apr. 2023, pp. 187–198. doi: 10.1145/3578244.3583726.

[4] S. Liu, M. He, Z. Wu, P. Lu, and W. Gu, “Spatial–temporal graph neural network traffic prediction based load balancing with reinforcement learning in cellular networks,” Inf. Fusion, vol. 103, p. 102079, Mar. 2024, doi: 10.1016/j.inffus.2023.102079.

[5] K. Karmakar, S. Dey, R. K. Das, and S. Khatua, “Scheduling of Containerized Resources for Microservices in Cloud,” in Distributed Computing and Intelligent Technology, S. Devismes, P. S. Mandal, V. V. Saradhi, B. Prasad, A. R. Molla, and G. Sharma, Eds., in Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2024, pp. 34–49. doi: 10.1007/978-3-031-50583-6_3.

[6] E. Kalyvianaki and M. Paolieri, Performance Evaluation Methodologies and Tools: 16th EAI International Conference, VALUETOOLS 2023, Crete, Greece, September 6–7, 2023, Proceedings. Springer Nature, 2024.

[7] Y. Fu et al., “Progress-based Container Scheduling for Short-lived Applications in a Kubernetes Cluster,” in 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA: IEEE, Dec. 2019, pp. 278–287. doi: 10.1109/BigData47090.2019.9006427.

[8] R. Bhardwaj and A. Ghouas, “Nomad - Hierarchical Computation Framework for IoT applications”.

[9] P. Geetha, S. J. Vivekanandan, R. Yogitha, and M. S. Jeyalakshmi, “Optimal load balancing in cloud: Introduction to hybrid optimization algorithm,” Expert Syst. Appl., vol. 237, p. 121450, Mar. 2024, doi: 10.1016/j.eswa.2023.121450.

[10] V. Kaliappan, S. Yu, R. Soundararajan, S. Jeon, D. Min, and E. Choi, “High-Secured Data Communication for Cloud Enabled Secure Docker Image Sharing Technique Using Blockchain-Based Homomorphic Encryption,” Energies, vol. 15, no. 15, p. 5544, Jul. 2022, doi: 10.3390/en15155544.

[11] K. Wang, Q. Zhou, S. Guo, and J. Luo, “Cluster Frameworks for Efficient Scheduling and Resource Allocation in Data Center Networks: A Survey,” IEEE Commun. Surv. Tutor., vol. 20, no. 4, pp. 3560–3580, 2018, doi: 10.1109/COMST.2018.2857922.

[12] V. Vassilev, “Data Platforms, Clouds and Spaces: Integration & Hybridization in Data Processing”.

[13] “Tutorials | Nomad | HashiCorp Developer,” Tutorials | Nomad | HashiCorp Developer. Accessed: Apr. 03, 2024. [Online]. Available: https://developer.hashicorp.com/nomad/tutorials

[14] N. Sabharwal, S. Pandey, and P. Pandey, Infrastructure-as-Code Automation Using Terraform, Packer, Vault, Nomad and Consul: Hands-on Deployment, Configuration, and Best Practices. Berkeley, CA: Apress, 2021. doi: 10.1007/978-1-4842-7129-2.

[15] P. Riti and D. Flynn, Beginning HCL Programming: Using Hashicorp Language for Automation and Configuration. Berkeley, CA: Apress, 2021. doi: 10.1007/978-1-4842-6634-2.

[16] B. Buyukates, M. Bastopcu, and S. Ulukus, “Version Age of Information in Clustered Gossip Networks.” arXiv, Sep. 17, 2021. Accessed: Apr. 30, 2023. [Online]. Available: http://arxiv.org/abs/2109.08669

[17] Q.-H. Chen and C.-Y. Wen, “Optimal Resource Allocation Using Genetic Algorithm in Container-Based Heterogeneous Cloud,” IEEE Access, pp. 1–1, 2024, doi: 10.1109/ACCESS.2024.3351944.

[18] S. R. Dira and M. A. F. Ridha, “Monitoring Kubernetes Cluster MenggunakanPrometheus dan Grafana,” 2022.

[19] M. Straesser, J. Mathiasch, A. Bauer, and S. Kounev, “A Systematic Approach for Benchmarking of Container Orchestration Frameworks,” in Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, Coimbra Portugal: ACM, Apr. 2023, pp. 187–198. doi: 10.1145/3578244.3583726.

[20] M. Femminella and G. Reali, “Gossip-based Monitoring Protocol for 6G Networks,” IEEE Trans. Netw. Serv. Manag., pp. 1–1, 2023, doi: 10.1109/TNSM.2023.3263542.

[21] O. C. Ibe, Fundamentals of Data Communication Networks. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. doi: 10.1002/9781119436294.

[22] R. Jin, Y. Huang, and H. Dai, “On the Privacy Guarantees of Gossip Protocols in General Networks.” arXiv, Feb. 05, 2021. Accessed: Apr. 30, 2023. [Online]. Available: http://arxiv.org/abs/1905.07598

[23] M. A. Setiawan and I. A. N. Fathony, “Containerization of Shibboleth IdP as access management single sign-on (SSO) service based on integrated Kubernetes cluster with GitLab CI automation,” presented at the VII INTERNATIONAL CONFERENCE “SAFETY PROBLEMS OF CIVIL ENGINEERING CRITICAL INFRASTRUCTURES” (SPCECI2021), Yekaterinburg, Russia, 2023, p. 020035. doi: 10.1063/5.0130139.

[24] W. Lu, L. Liang, B. Kong, B. Li, and Z. Zhu, “AI-Assisted Knowledge-Defined Network Orchestration for Energy-Efficient Data Center Networks,” IEEE Commun. Mag., vol. 58, no. 1, pp. 86–92, Jan. 2020, doi: 10.1109/MCOM.001.1800157.

[25] “A VIRTUAL DATA CENTER COMPARISON OF DIFFERENT FIREWALLS PERFORMANCE_Hanane Aznaoui_Canan Batur Şahin_Journal of Advancement in Computing.pdf.”

[26] B. C. Tedeschini, S. Savazzi, and M. Nicoli, “A Traffic Model based Approach to Parameter Server Design in Federated Learning Processes,” IEEE Commun. Lett., pp. 1–1, 2023, doi: 10.1109/LCOMM.2023.3272844.

Downloads

Published

2024-08-26

Issue

Section

Article

Citation Check