Classification of Bulughul Maraam Categories: Prohibitions, Recommendations, and Information Using Extreme Learning Machine and Fasttext

Authors

  • Rissa Handayani Fakultas Teknologi dan Informasi Ars University, Indonesia
  • Ina Najiyah Fakultas Teknologi dan Informasi Ars University, Indonesia
  • Dirga Wisnuwardana Fakultas Teknologi dan Informasi Ars University, Indonesia

DOI:

https://doi.org/10.15575/join.v8i2.1205

Keywords:

Classification of Authentic Hadith, Bulughul Maraam Book, Text Mining, Extreme Learning Machine for Classification

Abstract

Hadith is the second source of Islamic law after the Quran. After the hadiths were compiled, Imam of Hadith created collections of hadiths, one of which is Imam Bukhari who compiled the book Bulughul Maraam, which is considered to have the highest level of authenticity. Digital collections of hadiths can now be found in the form of e-books and web pages, which help in the search for hadiths. The classification of hadiths is necessary to organize them by category, making it easier to search for hadiths based on their categories. Text mining is needed to classify hadiths because it can identify patterns in unstructured text. This research aims to improve the accuracy of classifying recommended, prohibited, and informational hadiths using a dataset of 7008 hadiths, which consists of primary data taken from the book Bulughul Maraam in the Indonesian language. Previously, similar research was conducted in 2017 that classified recommended, prohibited, and obligatory hadiths with an accuracy of 85%, but only for Sahih Bukhari hadiths. In this research, the same classification categories will be examined, proposing a different method, namely the Extreme Learning Machine method and Word2vec Fasttext for text representation with a larger dataset. The results of this research show a model accuracy of 86.31%, 86% precision, and 87% recall, indicating that the proposed model performs well in classifying hadiths.

References

H. Anam, M. A. Yusuf, and S. Saada, “Kedudukan Al-Quran Dan Hadis Sebagai Dasar Pendidikan Islam,” Al-Tarbawi Al-Haditsah jurnal pendidikan agama islam , vol. 7, no. 22, pp. 1–17, Dec. 2022, doi: 10.32939/ishlah.v1i2.46.

D. Darussamin, KULIAH ILMU HADIS, KALMEDIA. RIAU: KALMIEDIA, 2020.

H. Noor, “KITAB HADIS DI PESANTREN: BIOGRAFI KITAB AL-BULUGH AL-MARAM,” Jurnal Pendidik Islam Bahsun Ilmy, vol. 01, pp. 1–10, 2020, [Online]. Available: https://irtaqi.net/2016/09/01/introduksi-kitab-bulughul-maram-ii/

S. M. Pd, E. Rahwanto, S. Kom, and R. Komala, “E-COMMERCE DORONG PEREKONOMIAN INDONESIA, SELAMA PANDEMI COVID 19 SEBAGAI ENTREPRENEUR MODERN DAN PENGARUHNYA TERHADAP BISNIS OFFLINE,” JURNAL MANAJEMEN DANBISNIS (JUMANIS) PRODI KEWIRAUSAHAAN, vol. 02, no. 2686–5939, pp. 111–124, 2020, doi: 10.47080.

S. S. Ummah, “DIGITALISASI HADIS (Studi Hadis di Era Digital),” Diroyah: Jurnal Ilmu Hadis 4, vol. 1, pp. 1–10, 2019.

D. Marini, U. Atmaja, and R. Mandala, “Analisa Judul Skripsi untuk Menentukan Peminatan Mahasiswa Menggunakan Vector Space Model dan Metode K-Nearest Neighbor,” IT FOR SOCIETY, vol. 04, no. 2503–2224, pp. 1–10, 2019.

M. Yuslan Abu Bakar and Adiwijaya, “KLASIFIKASI TEKS HADIS BUKHARI TERJEMAHAN INDONESIA MENGGUNAKAN RECURRENT CONVOLUTIONAL NEURAL NETWORK (CRNN),” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 8, no. 5, pp. 907–918, 2021, doi: 10.25126/jtiik.202183750.

I. F. Rozi, M. H. Ratsanjani, and R. A. Afandi, “KLASIFIKASI ANJURAN, LARANGAN, DAN INFORMASI PADA HADITS MENGGUNAKAN NAIVE BAYES CLASSIFIER,” in SEMINAR INFORMATIKA APLIKATIF POLINEMA (SIAP), 2020, pp. 303–310.

D. Tania Ananda Paramitha, I. Cholissodin, and C. Dewi, “Prediksi Rating Otomatis Berdasarkan Review Restoran pada Aplikasi Zomato dengan menggunakan Extreme Learning Machine (ELM),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 4687–4693, pp. 4687–4693, 2019, [Online]. Available: http://j-ptiik.ub.ac.id

D. A. Sani and M. Z. Sarwani, “Koreksi Jawaban Esai Berdasarkan Persamaan Makna Menggunakan Fasttext dan Algoritma Backpropagation,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 11, no. 2, pp. 92–111, Aug. 2022, doi: 10.23887/janapati.v11i2.49192.

A. Firdaus and W. I. Firdaus, “Text Mining Dan Pola Algoritma Dalam Penyelesaian Masalah Informasi?: (Sebuah Ulasan),” 2021.

A. Y. Muniar, Pasnur, and K. R. Lestari, “PENERAPAN ALGORITMA K-NEAREST NEIGHBOR PADA PENGKLASIFIKASIAN DOKUMEN BERITA ONLINE,” Jurnal Teknologi Informasi dan Komunikasi, vol. 10, no. 2, pp. 137–144, 2020.

S. Ulya, A. Ridwan, W. Cholid Wahyudin, F. Maisa, and H. D. Ab, “TEXT MINING SENTIMEN ANALISIS PENGGUNA APLIKASI MARKETPLACE TOKOPEDIA BERDASAR RATING DAN KOMENTAR PADA GOOGLE PLAY STORE,” 2022.

M. Afdal and L. R. Elita, “PENERAPAN TEXT MINING PADA APLIKASI TOKOPEDIA MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR,” Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informasi, vol. 8, no. 1, pp. 78–87, 2022.

N. A. Izati, B. Warsito, and T. Widiharih, “PREDIKSI HARGA EMAS MENGGUNAKAN FEED FORWARD NEURAL NETWORK DENGAN METODE EXTREME LEARNING MACHINE,” JURNAL GAUSSIAN, vol. 8, no. 2339–2541, pp. 171–183, 2019, [Online]. Available: http://ejournal3.undip.ac.id/index.php/gaussian

A. N. Alfiyatin, W. F. Mahmudy, C. F. Ananda, and Y. P. Anggodo, “Penerapan Extreme Learning Machine (ELM) untuk Peramalan Laju Inflasi di Indonesia,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 2, p. 179, 2019, doi: 10.25126/jtiik.201962900.

D. Azzahra Nasution, H. H. Khotimah, and N. Chamidah, “PERBANDINGAN NORMALISASI DATA UNTUK KLASIFIKASI WINE MENGGUNAKAN ALGORITMA K-NN,” CESS (Journal of Computer Engineering System and Science), vol. 4, no. 2502–7131, pp. 2502–7131, 2019.

S. C. Nayak and B. B. Misra, “Extreme learning with chemical reaction optimization for stock volatility prediction,” Financial Innovation, vol. 6, no. 1, Dec. 2020, doi: 10.1186/s40854-020-00177-2.

H. Mukhtar, R. Gunawan, A. Hariyanto, Syahril, and Wide Mulyana, “Peramalan Kedatangan Wisatawan ke Suatu Negara Menggunakan Metode Support Vector Machine (SVM),” Jurnal CoSciTech (Computer Science and Information Technology), vol. 3, no. 3, pp. 274–282, Dec. 2022, doi: 10.37859/coscitech.v3i3.4211.

M. Azhari, Z. Situmorang, and R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes,” Jurnal Media Informatika Budidarma, vol. 5, no. 2, p. 640, 2021, doi: 10.30865/mib.v5i2.2937.

D. Musfiroh, U. Khaira, P. E. P. Utomo, and T. Suratno, “Analisis Sentimen terhadap Perkuliahan Daring di Indonesia dari Twitter Dataset Menggunakan InSet Lexicon,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 1, no. 1, pp. 24–33, 2021, doi: 10.57152/malcom.v1i1.20.

S. Kritik Matan Hadits Al and A. Diana Devi UIN Sunan Kalijaga Yogyakarta, “Studi Kritik Matan Hadits,” Desember Tahun, vol. 14, no. 2, pp. 293–312, 2020, doi: 10.24042/digunakan.

Downloads

Published

2023-12-28

Issue

Section

Article

Citation Check