Regression Analysis for Crop Production Using CLARANS Algorithm
DOI:
https://doi.org/10.15575/join.v8i1.1031Keywords:
CRALARNS, Clusters, Crop Production, Regression, RainfallAbstract
References
T. T. H. Tambunan, Perkembangan Sektor Pertanian di Indonesia, Cet. 1. Jakarta?: Ghalia Indonesia, 2003. [Online]. Available: http://agris.fao.org/agris-search/search.do?recordID=US201300101636
C. Kubitza, V. V Krishna, K. Urban, Z. Alamsyah, and M. Qaim, “Land Property Rights, Agricultural Intensification, and Deforestation in Indonesia,” Ecological Economics, vol. 147, pp. 312–321, 2018, doi: https://doi.org/10.1016/j.ecolecon.2018.01.021.
TNA, “Indonesia Technology Needs Assessment for Climate Change Mitigation,” UNEP on behalf of Global Environmental Facility (GEF), 2012.
H. S. Lee, “General Rainfall Patterns in Indonesia and the Potential Impacts of Local Seas on Rainfall Intensity,” Water (Switzerland), vol. 7, no. 4, 2015, doi: 10.3390/w7041751.
R. D’Arrigo and R. Wilson, “El Niño and Indian Ocean influences on Indonesian drought: Implications for forecasting rainfall and crop productivity,” International Journal of Climatology, vol. 28, no. 5, 2008, doi: 10.1002/joc.1654.
Supari, F. Tangang, E. Salimun, E. Aldrian, A. Sopaheluwakan, and L. Juneng, “ENSO modulation of seasonal rainfall and extremes in Indonesia,” Clim Dyn, vol. 51, no. 7–8, 2018, doi: 10.1007/s00382-017-4028-8.
Badan Pusat Statistika, “Statistik Perumahan Dan Permukiman 2019,” Katalog BPS, 2019.
N. S. Sani, A. H. A. Rahman, A. Adam, I. Shlash, and M. Aliff, “Ensemble Learning for Rainfall Prediction,” International Journal of Advanced Computer Science and Applications, vol. 11, no. 11, 2020, doi: 10.14569/IJACSA.2020.0111120.
G. B. Sai Tarun, J. V. Sriram, K. Sairam, K. T. Sreenivas, and M. V. B. T. Santhi, “Rainfall prediction using machine learning techniques,” International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 7, 2019.
S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali, and Z. Nawaz, “Rainfall prediction using data mining techniques: A systematic literature review,” International Journal of Advanced Computer Science and Applications, vol. 9, no. 5. 2018. doi: 10.14569/IJACSA.2018.090518.
W. H. H. Wischmeier and D. D. D. Smith, “Predicting rainfall erosion losses,” Agriculture handbook no. 537, no. 537, pp. 285–291, 1978, doi: 10.1029/TR039i002p00285.
A. Kurniadi, E. Weller, S. K. Min, and M. G. Seong, “Independent ENSO and IOD impacts on rainfall extremes over Indonesia,” International Journal of Climatology, vol. 41, no. 6, 2021, doi: 10.1002/joc.7040.
Supriyono, F. Wira Citra, B. Sulistyo, and M. Faiz Barchia, “Mapping Erosivity Rain And Spatial Distribution Of Rainfall In Catchment Area Bengkulu River Watershed,” Journal of Environment and Earth Science, vol. 7, no. 10, 2017.
M. Wang, A. Wang, and A. Li, “Mining spatial-temporal clusters from geo-databases,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2006. doi: 10.1007/11811305_29.
M. Bertolotto, S. Di Martino, F. Ferrucci, and T. Kechadi, “Towards a framework for mining and analyzing spatio-temporal datasets,” International Journal of Geographical Information Science, vol. 21, no. 8, 2007, doi: 10.1080/13658810701349052.
G. Atluri, A. Karpatne, and V. Kumar, “Spatio-temporal data mining: A survey of problems and methods,” ACM Computing Surveys, vol. 51, no. 4. 2018. doi: 10.1145/3161602.
M. S. M. Ariff, N. M., Bakar, M. A. A., Mahbar, S. F. S., & Nadzir, “Clustering Of Rainfall Distribution Patterns Using Time Series Clustering Method,” Malaysian Journal of Science, vol. 38, no. Sp2, 2019.
V. Tobar and G. Wyseure, “Seasonal rainfall patterns classification, relationship to ENSO and rainfall trends in Ecuador,” International Journal of Climatology, vol. 38, no. 4, 2018, doi: 10.1002/joc.5297.
S. M. C. M. Nor, S. M. Shaharudin, S. Ismail, S. A. M. Najib, M. L. Tan, and N. Ahmad, “Statistical Modeling of RPCA-FCM in Spatiotemporal Rainfall Patterns Recognition,” Atmosphere (Basel), vol. 13, no. 1, 2022, doi: 10.3390/atmos13010145.
F. Liu and Y. Deng, “Determine the Number of Unknown Targets in Open World Based on Elbow Method,” IEEE Transactions on Fuzzy Systems, vol. 29, no. 5, 2021, doi: 10.1109/TFUZZ.2020.2966182.
B. Purnima, K. Arvind, P. Bholowalia, and A. Kumar, “EBK-Means: A Clustering Technique based on Elbow Method and K-Means in WSN,” Int J Comput Appl, vol. 105, no. 9, 2014.
C. Shi, B. Wei, S. Wei, W. Wang, H. Liu, and J. Liu, “A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm,” EURASIP J Wirel Commun Netw, vol. 2021, no. 1, 2021, doi: 10.1186/s13638-021-01910-w.
V. Sagvekar, V. Sagvekar, and K. Deorukhkar, “Performance assessment of CLARANS: A Method for Clustering Objects for Spatial Data Mining,” Global Journal of Engineering, Design & Technology/Global Institute for Research & Education, vol. 2, no. 6, 2013.
A. Azizah, R. Cahyandari, A. F. Huda, Sukono, Subiyanto, and A. T. Bon, “Application of spatial weighting matrix of GSTAR by using CLARANS clustering on farmer exchange rates in 32 provinces in Indonesia,” in Proceedings of the International Conference on Industrial Engineering and Operations Management, 2019.
R. T. Ng and J. Han, “CLARANS: A method for clustering objects for spatial data mining,” IEEE Trans Knowl Data Eng, vol. 14, no. 5, 2002, doi: 10.1109/TKDE.2002.1033770.
M. B. Al-Zoubi and M. Al Rawi, “An efficient approach for computing silhouette coefficients,” Journal of Computer Science, vol. 4, no. 3, 2008, doi: 10.3844/jcssp.2008.252.255.
H. ?ezanková, “Different approaches to the silhouette coefficient calculation in cluster evaluation,” 21st International Scientific Conference AMSE, no. September 2018.
R. Hidayati, A. Zubair, A. Hidayat Pratama, L. Indana, P. Studi Sistem Informasi, and F. Teknologi Informasi, “Silhouette Coefficient Analysis in 6 Measuring Distances of K-Means Clustering,” Techno.Com, vol. 20, no. 2, 2021.
R. D. Jujjuri and M. Venkateswara Rao, “Evaluation of enhanced subspace clustering validity using silhouette coefficient internal measure,” Journal of Advanced Research in Dynamical and Control Systems, vol. 11, no. 1, 2019.
D. Bera, N. Das Chatterjee, and S. Bera, “Comparative performance of linear regression, polynomial regression and generalized additive model for canopy cover estimation in the dry deciduous forest of West Bengal, Remote Sensing Applications: Society and Environment,” vol. 22, p. 100502, Dec. 2021.
Y. W. Park and D. Klabjan, “Subset selection for multiple linear regression via optimization,” Journal of Global Optimization, vol. 77, no. 3, 2020, doi: 10.1007/s10898-020-00876-1.
B. Dhaval and A. Deshpande, “Short-term load forecasting with using multiple linear regression,” International Journal of Electrical and Computer Engineering, vol. 10, no. 4, 2020, doi: 10.11591/ijece.v10i4.pp3911-3917.
B. Zerouali, M. Chettih, Z. Abda, M. Mesbah, C. A. G. Santos, and R. M. Brasil Neto, “A new regionalization of rainfall patterns based on wavelet transform information and hierarchical cluster analysis in northeastern Algeria,” Theor Appl Climatol, vol. 147, no. 3–4, 2022, doi: 10.1007/s00704-021-03883-8.
W. Y. Ayele, “Adapting CRISP-DM for Idea Mining,” International Journal of Advanced Computer Science and Applications, vol. 11, no. 6, pp. 20–32, 2020.
R. Wirth, “CRISP-DM?: Towards a Standard Process Model for Data Mining,” Proceedings of the Fourth International Conference on the Practical Application of Knowledge Discovery and Data Mining, no. 24959, 2000.
C. Schr?er, F. Kruse, and J. M. G?mez, “A systematic literature review on applying CRISP-DM process model, Procedia Computer Science,” vol. 181, pp. 526–534, 2021.
BNPB, “Infografis Bencana Banjir dan Longsor Bengkulu,” 2023. https://bnpb.go.id/infografis/infografis-bencana-banjir-dan-longsor-bengkulu (accessed Feb. 14, 2023).
S. Supriyono, S. Utaya, D. Taryana, and B. Handoyo, “Spatial-Temporal Trend Analysis of Rainfall Erosivity and Erosivity Density of Tropical Area in Air Bengkulu Watershed, Indonesia, Quaestiones Geographicae,” vol. 40, no. 3, pp. 125–142, 2021.
C. Shearer et al., “The CRISP-DM model: The New Blueprint for Data Mining,” Journal of Data Warehousing, 2000.
J. Wu, Advances in K-means Clustering: a data mining thinking. 2012.
E. Biabiany, D. C. Bernard, V. Page, and H. Paugam-Moisy, “Design of an expert distance metric for climate clustering: The case of rainfall in the Lesser Antilles,” Comput Geosci, vol. 145, 2020, doi: 10.1016/j.cageo.2020.104612.
M. Senožetnik, L. Bradeško, B. Kaži?, D. Mladeni, and T. Šubic, “Spatio-temporal clustering methods,” http://optimumproject.eu/news/44/67/Spatio-temporal-Clustering-Methods.html, 2016.
H. F. Tork, “Spatio-Temporal Clustering Methods Classification,” Doctoral Symposium on Informatics Engineering (DSIE’2012), no. December 2012.
V. V. D. M. S. Takalikar, “Survey on Spatio-Temporal Clustering,” International Journal of Science and Research (IJSR), vol. 5, no. 7, 2016.
Y. Ren, N. Wang, M. Li, and Z. Xu, “Deep density-based image clustering,” Knowl Based Syst, vol. 197, 2020, doi: 10.1016/j.knosys.2020.105841.
S. Rath, A. Tripathy, and A. R. Tripathy, “Prediction of new active cases of coronavirus disease (COVID-19) pandemic using multiple linear regression model,” Diabetes and Metabolic Syndrome: Clinical Research and Reviews, vol. 14, no. 5, 2020, doi: 10.1016/j.dsx.2020.07.045.
G. Mulyasari, “KAJIAN KETAHANAN PANGAN DAN KERAWANAN PANGAN DI PROVINSI BENGKULU,” Jurnal AGRISEP, vol. 15, no. 1, 2016, doi: 10.31186/jagrisep.15.1.83-90.
A. Sutoyo, “Implementasi Program Aksi Ketahanan Pangan Di Propinsi Bengkulu,” Jurnal Administrasi Publik, vol. 11, no. 1, 2013.
G. Su, “Analysis of optimization method for online education data mining based on big data assessment technology,” Int J Contin Eng Educ Life Long Learn, vol. 29, no. 4, 2019, doi: 10.1504/IJCEELL.2019.102768.
S. Shekhar, M. R. Evans, J. M. Kang, and P. Mohan, “Identifying patterns in spatial information: A survey of methods,” Wiley Interdiscip Rev Data Min Knowl Discov, vol. 1, no. 3, pp. 193–214, 2011, doi: 10.1002/widm.25.
C. Fischer et al., “Mining Big Data in Education: Affordances and Challenges,” Review of Research in Education, vol. 44, no. 1, 2020, doi: 10.3102/0091732X20903304.
Jeonghee Kim, “Exploratory Analysis and Visualization of Spatio-Temporal Data Using Data Mining,” Journal of the Association of Korean Photo-Geographers, vol. 29, no. 4, 2019, doi: 10.35149/jakpg.2019.29.4.01
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2023 Arie Vatresia, Ruvita Faurina, Yanti Simanjuntak
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License