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 Soybean is one of the protein main sources that can be used for consumption 

in tempeh, tofu, milk, etc. Based on projection results, soybean production 

and consumption balance in Indonesia, in 2018-2022, it is estimated that 

deficit will increase by 6.18% per year. So, it's necessary to guide soybean 

land suitability, which can be carried out by evaluating existing land 

suitability to support soybean farming expansion and production. This study 

conducted an analytical study to evaluate soybean land suitability using C5.0 

algorithm based on land and weather characteristics. The C5.0 algorithm is 

an extension of spatial decision tree, an ID3 decision tree extension. Dataset 

is divided into two categories: explanatory factors representing seven land 

characteristics (drainage, land slope, base saturation, cation exchange 

capacity, soil texture, soil pH, and soil mineral depth) and two weather data 

(rainfall and temperature), and a target class represent soybean land 

suitability in two study areas, namely Bogor and Grobogan Regency. The 

result generated two land suitability models with the best model obtained 

accuracy for training data 98.58%, while testing data was 97.17%. The best 

model rules are 69 rules that do not involve three attributes: cation exchange 

capacity, soil mineral depth, and rainfall. 
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1. INTRODUCTION 

Soybean is one of the main protein sources for humans that come from plants [1]. For some people 

who adopt a healthy lifestyle, soybeans protein is a priority over protein derived from animals. This is because 

soy is a major ingredient in lactose-free vegan products, as are soy milk and tofu [1]. In Indonesia, soybean is 

also the most popular source of vegetable protein, with the main consumption of soy products in tempeh and 

tofu, which are the main side dishes for the community [2]. The increase in the need for soybean consumption 

in Indonesia is predicted to continue to increase by an average of 1.73% per year [3]. This is an implication of 

Indonesia's increasing population, which in 2035 is projected to reach 305.6 million [4]. 

The development of soybean harvested area in Indonesia from 1980 to 2016 did not significantly 

increase, namely only 0.69% per year [5]. This has resulted in an inability to meet domestic soybean needs, 

with an average import of 5.88 million tons in 2012-2016 [6]. Moreover, the result of SUSENAS in 2015 stated 

that in national tempeh and tofu production, the need for soybean as raw material was met from import with a 

percentage of 67.28%, or as much as 1.96 million tons [5]. Soybean, which is the main raw material, cannot be 

fully met from domestic production due to limitations in the expansion of cultivation affected by land and 

climate. Increased productivity and efficiency in soybean cultivation can be achieved by applying location-

specific technology [7], such as determining optimal growth requirements followed by mapping soybean land 

suitability directions obtained by evaluating land suitability [8]. 

Land suitability evaluation is a process of assessing land resources potential based on pre-existing 

land suitability [9]. The most basic land suitability evaluation technique that is often used matches land 

suitability with land and weather characteristics which then produces limiting factors [10][11]. The 

development of artificial intelligence can also be used, such as applying a machine learning method for data 

classification [12], which in this study is the suitability of soybean land. Previous studies have applied the 
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spatial decision tree classification algorithm to evaluate land suitability for soybean [13] and oil palm [14], 

yielding an accuracy of 92.73% and 98.18%, respectively. However, these two studies have not involved 

weather/climate factors which are essential elements in determining land suitability [15][16][17], so it needs 

to be studied further. In terms of performance, the spatial decision tree algorithm is an extension of the ID3 

decision tree, developed into a C5.0 algorithm with better accuracy and can handle discrete and continuous 

data [18][19]. Thus, the application of the C5.0 algorithm is expected to be able to produce rules with more 

optimal accuracy and precision for soybean land suitability mapping. 

This study aims to produce a land suitability prediction model in the form of growth requirements in 

the cultivation of soybean agricultural commodities. The rules were obtained by applying the C5.0 decision 

tree algorithm to the dataset obtained from the field survey by Indonesian Center for Agricultural Land 

Resources Research and Development (BBSDLP). The C5.0 algorithm is used to extract soybean land 

suitability dataset to produce rules that can describe data patterns based on class [20], which in this study refers 

to FAO, namely highly suitable (S1), moderately suitable (S2), marginally suitable (S3), not suitable (N). With 

this rule, it is possible to map the soybean land suitability based on the land and weather characteristics in an 

area. As an implication, it is hoped that it can provide information to related parties in determining priority 

areas for the development/expansion of soybean commodity agriculture to increase its productivity, reducing 

the import volume. 

 

2. METHOD 

2.1.  Study area 

The study area used in this study includes two areas, namely Bogor Regency (West Java Province) 

and Grobogan Regency (Central Java Province), with an area of ± 299.070 hectares (ha) [8] and ± 202,867 ha 

[21] respectively. The use of Bogor Regency as a follow-up to previous soybean land suitability research 

resulted in a model with fairly good accuracy [13], which means that it can be used as a role model for 

representing optimal soybean land suitability. Meanwhile, Grobogan Regency is the main centre for soybean 

production in Central Java Province with a contribution of 43.08% [6], so it is hoped that it can also become a 

role model that produces optimal land suitability regulation for other regions. The two district datasets are then 

combined to form a unified dataset to become a richer dataset. 

The data used in this study are divided into two categories, namely explanatory factors and target 

class. The explanatory factor is nine planting criteria for soybean, including seven land characteristics derived 

from BBSDLP, namely drainage, relief, soil pH, soil texture, cation exchange capacity, base saturation, and 

soil mineral depth. Two weather data come from Meteorological, Climatological, and Geophysical Agency 

(BMKG), namely rainfall and temperature. Meanwhile, this study's target class represented the soybean land 

suitability class obtained based on the previous mapping by BBSDLP. The research data used in full is shown 

in Table 1. 
Table 1. Research Data 

Attribute Description Format Source 

Drainage* Classification of the rate effect per location of water into the on-air soil 

aeration 

Vector BBSDLP 

Land slope (%) The land slope measured in% Vector BBSDLP 

Soil pH (°) Nutrient value / soil acidity Vector BBSDLP 

Soil texture* Classification of terms in the distribution of fine soil particles with a size 
<2 mm 

Vector BBSDLP 

Cation exchange capacity 
(cmol) 

The cation exchange capacity value of clay fraction Vector BBSDLP 

Base saturation (%) The number of bases (NH4OAc) present in 100g of soil sample Vector BBSDLP 

Depth of soil mineral (cm) The mineral depth value in the soil layer Vector BBSDLP 
Rainfall (mm) The total value of rainfall in a month (October 2019) Spreadsheet BMKG 

Temperature (°C) Average temperature value in a month (October 2019) Spreadsheet BMKG 

Soybean land suitability The level classification of soybean land suitability consists of four classes, 
namely very suitable (S1), moderately suitable (S2), marginally suitable 

(S3), and not suitable (N) 

Vector BBSDLP 

*The attribute has no class 
 

This research was conducted in several main stages: data preprocessing, C5.0 modeling, and decision 

tree visualization, and soybean land suitability map. The process flow of these stages can be seen in Figure 1. 
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Figure 1. Steps of Study 

 

2.2.  Data preprocessing 

Based on the research flow chart in Figure 1, data preprocessing aims to produce a non-spatial dataset 

in spreadsheet format so that modeling can be carried out using the C5.0 algorithm. This study carried out data 

preprocessing in three stages: integration of spatial and non-spatial data, interpolation of weather layers, and 

non-spatial dataset formation. The Bogor Regency dataset will skip the first stage because it has been formed 

in the previous study [13], so it will go straight to the second and final stages. The following is the explanation 

of each stage: 

a) Integration of spatial and non-spatial data 

The first data preprocessing stage was integrating the spatial and non-spatial data of Grobogan 

Regency obtained from BBSDLP, namely drainage, relief, base saturation, cation exchange capacity, soil 

texture, soil pH, and soil mineral depth. The seven variables were obtained from BBSDLP in two forms: spatial 

objects in vector format and non-spatial attributes in spreadsheet format, which need to be combined first based 

on land map units (SPT). SPT is an identity of a data row connected to spatial objects, which in this study, an 

SPT can represent one or more of several polygon-shaped spatial objects. The merger process is carried out 

using Database Management System (DBMS) of PostgreSQL version 13.1. This stage produces seven layers 

of land characteristics in Grobogan Regency with a non-spatial attribute on each spatial object. 

b) Interpolation of weather data 

At this stage, weather data interpolation is carried out to produce a rainfall layer and a temperature 

layer in Bogor Regency and Grobogan Regency. In interpolation, a method is needed which in this study uses 

Ordinary Cokriging (OCK), which has better accuracy than other methods, namely Ordinary Kriging (OK) and 

Kriging with External Drift (KED) [22]. OCK interpolation requires two or more correlated variables [23], 

where the main variable is used as the value to be distributed, while the other variables are used as support. 

The total rainfall value in a month is used as the main variable to interpolate the rainfall data, and a 

supporting variable is the elevation value. Meanwhile, in the temperature data interpolation, the average 

temperature value in a month is used as the main variable, and a supporting variable is the elevation value. The 

use of elevation value as a supporting variable in rainfall and temperature interpolation is based on altitude 

affecting weather/climate [24]. OCK interpolation is carried out using coordinates of several nearby weather 

stations from the location where the weather value is generated as a distribution point for the surrounding 

location. The whole process is assisted by ArcMap version 10.3. The nearest weather stations, along with 

rainfall and temperature values in Bogor Regency and Grobogan Regency obtained from the BMKG online 

data service [25], are shown in Table 2 and Table 3. 

 
Table 2. Nearest Weather Stations in Bogor Regency 

Station Longitude Latitude Rainfall (mm) Temperature (℃) 

Citeko Meteorological Station 106.85 -6.7 180.2 22.21 

Bogor Climatology Station 106.75 -6.5 381.9 26.71 

Bandung Geophysical Station 107.59733 -6.88356 90.2 24.87 

Budiarto Meteorological Station 106.56389 -6.2867 63.3 27.81 
South Tangerang Climatology Station 106.75084 -6.26151 45.1 29.42 

Halim Perdana Kusuma Jakarta 106.88926 -6.27036 132.7 29.05 

Tangerang Geophysical Station 106.38 -6.1 28.1 29.03 

 
Table 3. Nearest Weather Stations in Grobogan Regency 

Station Longitude Latitude Rainfall (mm) Temperature (℃) 

Banjarnegara Geophysical Station 109.7069 -7.333 20 24.11 
Ahmad Yani Meteorological Station 110.3778 -6.97683 8.6 29.6 

Semarang Climatology Station 110.3812 -6.9847 8.2 29.82 

Tanjung Emas Maritime Meteorological Station 110.4199 -6.9486 5 29.66 
Sleman Climatology Station 110.354 -7.731 2.5 26.66 

Sleman Geophysical Station 110.3 -7.82 3 26.82 

Nganjuk Geophysical Station 111.76682 -7.73486 57 26.77 
Tuban Meteorological Station 111.99177 -6.8229 33 28.85 

The rainfall and temperature layer results are in raster format, containing pixel points that are weather 

distribution values of the nearest stations. The points are then inserted into each polygon based on an average 
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using the Add Surface Information tool in ArcMap. The insertion process will make each polygon have ten 

non-spatial attributes consisting of nine explanatory factors and a target class. 

c) Formation of non-spatial dataset 

Unlike previous studies [13][14], in this study, modeling was carried out using the C5.0 decision tree 

algorithm, which cannot handle spatial data, so it is necessary to establish a non-spatial dataset in spreadsheet 

format first. The formation of the dataset is done by converting vector-type spatial data represented in polygons. 

In this study, a data row (containing non-spatial attributes in the form of nine explanatory factors and a target 

class) is separated based on the polygon. This means that if a regency has 100 polygons, it will produce a non-

spatial dataset containing 100 rows of data. The separation based on polygons is due to the possibility of 

obtaining differences in rainfall and temperature values from the previous insertion results for each polygon 

even with the same SPT. 

 

2.3.  C5.0 algorithm 

The C5.0 algorithm is an extension of the C4.5 algorithm, which has advantages, especially in large 

data sets. The C5.0 algorithm is better than the C4.5 algorithm on efficiency and memory [26]. In general, the 

tree-making process flow in the C5.0 algorithm and C4.5 algorithm is similar, where the two algorithms 

perform entropy and gain calculation. The C4.5 algorithm will stop only at the gain calculation, while the C5.0 

algorithm will continue by calculating the gain ratio based on gain and entropy value. The gain ratio value is 

used to select the test attribute for each node in the tree. The attribute with the highest gain ratio value will be 

selected as the parent of the next node. Equation 1 [27] is used to calculate the entropy value. 

  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = − ∑ 𝑝𝑖𝑙𝑜𝑔2
𝑝𝑖𝑚

𝑖=1                 (1) 

 

where 𝑆 is a dataset consisting of 𝑛 sample data, 𝑝𝑖  is the proportion that can be calculated by 𝑝𝑖 =
𝑛𝑖

|𝑠|
, 𝑛𝑖 is the 

amount of data belonging to class 𝑖, and |𝑠| is the amount of data in the set 𝑆. To calculate the conditional 

entropy for attribute A, Equation 2 [27] is used. 

 

𝐸(𝑆|𝐴) =  − ∑ 𝑝𝑖
′𝑣

𝑗=1 ∑ 𝑝𝑖𝑗𝑙𝑜𝑔2(𝑝𝑖𝑗)𝑚
𝑖=1                (2) 

 

where 𝑝𝑗
′  is proportion which can be calculated by 𝑝𝑗

′ =
|𝑠𝑗|

𝑠
=

∑ 𝑛𝑖𝑗
𝑚
𝑖

𝑛
, 𝑝𝑖𝑗 is the conditional probability which 

can be calculated by 𝑝𝑖𝑗 =
𝑛𝑖𝑗

|𝑠𝑗|
, and |𝑠𝑗| is the amount of data with attribute A. Then, the gain value of attribute 

A can be calculated by Equation 3 [27]. 

 

𝐺𝑎𝑖𝑛 (𝐴) = 𝐸(𝐴) − 𝐸(𝑆|𝐴)                (3) 

 

The gain ratio value of attribute A is calculated by Equation 4 [27]. 

 

𝐺𝑎𝑖𝑛 𝑅𝑎𝑡𝑖𝑜 (𝐴) =  
𝐺𝑎𝑖𝑛 (𝐴)

𝑆𝑝𝑙𝑖𝑡 (𝐴)
                (4) 

 

where, 

𝑆𝑝𝑙𝑖𝑡(𝐴) =  − ∑ 𝑝𝑗
′

𝑣

𝑗=1
𝑙𝑜𝑔2(𝑝𝑗

′) 

 

The C5.0 algorithm breaks down the training data based on an attribute with the largest gain 

information value. The split procedure continues until no more data subset can be split. To obtain the best 

result, model evaluation is carried out by calculating the accuracy, which will show the correct level of 

predicting data against the actual data. The higher the accuracy value means, the lower the test data's prediction 

error so that the model has good performance. This study's evaluation method is K-fold cross-validation, which 

divides the sample set randomly into k subsets. In this method, it is repeated k times for training and testing 

data [28]. One subset is used for testing in each iteration, while the remaining subset is used for training. 

Accuracy is obtained based on test data against the classification model using Equation 5 [29]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =  
∑ 𝑇𝑒𝑠𝑡 𝑑𝑎𝑡𝑎 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

∑ 𝑇𝑒𝑠𝑡 𝑑𝑎𝑡𝑎
× 100               (5) 
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2.4.  Land suitability model visualization 

At the final stage, visualization is carried out for the best model that describes the soybean land 

suitability rules. Furthermore, soybean land suitability maps were also visualized in two study areas, namely 

Bogor Regency and Grobogan Regency, based on the best model's results. The visualization process is carried 

out using ArcMap to generate spatial maps. 

 

3. RESULTS AND DISCUSSION 

The data preprocessing stage resulted in 388 rows of data, a combination of 238 rows from Bogor 

Regency, while 150 rows from the Grobogan Regency. The combined dataset has ten attributes consisting of 

nine explanatory factors and a target class. The list of attributes, data types, and levels of each attribute is 

shown in Table 4. 
Table 4. List of Attributes 

Attribute Data Type Attribute Level 

Drainage* Nominal Swift, good, slightly hamper, hamper 
Land slope (%) Ordinal Flat (0), slightly flat (1−3), slightly slope (4−8), slope (9−15), slightly steep (16−25), 

steep (26−40), very steep (>40) 

Soil pH (°) Ordinal Acid (4.5−5.5), slightly acid (5.6−6.5), neutral (6.6−7.5), slightly alkaline (7.6−8.5) 
Soil texture* Nominal Very smooth, smooth, slightly smooth, slightly rude, rude 

Cation exchange 

capacity (cmol) 

Ordinal Low (5−16), medium (17−24), high (24−40), very high (>40) 

Base saturation (%) Ordinal Low (20−35), medium (36−60), high (61−80), very high (>80) 

Depth of soil mineral 

(cm) 

Ordinal Shallow (25−50), deep (76−100), very deep (>100) 

Rainfall (mm) Continuous Range from 15.51 to 317.12 

Temperatur (°C) Continuous Range from 25.76 to 29.21 

Soybean land suitability Ordinal Highly suitable (S1), moderately suitable (S2), marginally suitable (S3), not suitable (N) 

*Attribute level value is class, do not have the numeric value 

 

Based on data details in Table 4, it is also obtained land suitability class distribution from the dataset, 

as shown in Figure 2. 

 

 
Figure 2. Distribution of Land Suitability Classes 

 

3.1.  C5.0 decision tree for soybean land suitability 

C5.0 decision tree modelling was carried out using R version 4.0.3 by utilizing the C50 library. Two 

model variations were produced as a comparison to obtain the best rule result, especially in accuracy terms. 

Model variations are made based on the K-Fold cross-validation method, where the first variation uses K = 5, 

then the second variation uses K = 10. In 5-fold cross-validation model variation, data is divided into five folds. 

This variation generated 5 model partitions in which four folds are used as training data, and one fold is used 

as test data. The training data is used to form the classification model, while the test data is used to calculate 

the classification model accuracy. Furthermore, 10-fold cross-validation model variation also uses the same 

concept, only different in the number of folds, which is 10. 

 

3.2.  Model evaluation 

The applying results of the C5.0 algorithm to the models were tested using the cross-validation 

evaluation method with a variation of 5-folds (hereinafter referred to as model X) and 10-folds (hereinafter 

referred to as model Y). Evaluation result details of model X can be seen in Table 5, while model Y can be 

seen in Table 6. 
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Table 5. Model Evaluation using 5-Fold Cross-Validation 
Iteration Fold on 

Train Data 

Fold on 

Test Data 

Root 

Node 

Attribute not Involved Number 

of Rules 

Train Data 

Accuracy (%) 

Test Data 

Accuracy (%) 

1 1,2,3,4 5 Land 
slope 

Depth of soil mineral, rainfall 14 99.03 94.87 

2 1,2,3,5 4 Land 

slope 

Cation exchange capacity, rainfall 14 98.39 98.7 

3 1,2,4,5 3 Land 

slope 

Depth of soil mineral, rainfall 14 99.03 94.87 

4 1,3,4,5 2 Land 
slope 

Depth of soil mineral 15 98.71 98.7 

5 2,3,4,5 1 Land 

slope 

Cation exchange capacity, depth 

of soil mineral, rainfall 

12 97.74 98.72 

Total 69 98.58 97.17 

 
Table 6. Model Evaluation using 10-Fold Cross Validation 

Iteration Fold on Train 

Data 

Fold on 

Test Data 

Root 

Node 

Attribute not Involved Number 

of Rules 

Train Data 

Accuracy (%) 

Test Data 

Accuracy (%) 

1 1,2,3,4,5,6,7,8,9 10 Land 

slope 

Rainfall 14 99.14 94.87 

2 1,2,3,4,5,6,7,8,10 9 Land 

slope 

Depth of soil mineral 16 99.14 94.87 

3 1,2,3,4,5,6,7,9,10 8 Land 
slope 

Cation exchange capacity 16 98.85 100 

4 1,2,3,4,5,6,8,9,10 7 Land 

slope 

Cation exchange capacity, 

rainfall 

14 98.57 97.37 

5 1,2,3,4,5,7,8,9,10 6 Land 

slope 

Cation exchange capacity, 

rainfall 

15 98.85 94.87 

6 1,2,3,4,6,7,8,9,10 5 Land 
slope 

Cation exchange capacity, 
depth of soil mineral 

14 98.85 94.87 

7 1,2,3,5,6,7,8,9,10 4 Land 

slope 

Cation exchange capacity, 

depth of soil mineral, 
rainfall 

14 98.57 97.37 

8 1,2,4,5,6,7,8,9,10 3 Land 

slope 

Rainfall 20 99.43 100 

9 1,3,4,5,6,7,8,9,10 2 Land 

slope 

Cation exchange capacity, 

rainfall 

16 99.14 97.43 

10 2,3,4,5,6,7,8,9,10 1 Land 
slope 

Cation exchange capacity, 
depth of soil mineral, 

rainfall 

13 97.99 97.43 

Total 142 98.85 96.91 

 

Table 5 shows that iterations 1 and 3 produce the best partition models for training data with better 

accuracy, namely 99.03%. This indicates that the similarity level in training data is very high so that the model 

can represent it well when tested again on training data. However, it is different if partition model iteration 1 

and 3 are tested using test data, where accuracy decreases significantly, namely ± 5%. This shows that two 

partition datasets cannot represent every data in test data, which means that the similarity between training data 

and test data is not high. Furthermore, based on Table 5, the best model partition is generated in iteration 4, 

which obtains similar accuracy in testing training data and test data, namely 98.71% and 98.7%, where accuracy 

is not far apart when compared to the highest accuracy, which is 98.71% compared 99.03%. In general, Table 

5 explains that the resulting model has excellent average accuracy, where training data accuracy is slightly 

higher than test data accuracy. 

Table 6 shows that the resulting model partition in iteration 8 is the best partition model with an 

accuracy of 99.43% on training data and 100% on test data. This is inversely proportional to model partition 

in iterations 5 and 6, which has the lowest accuracy. Data diversity can cause this difference, where the lower 

the data diversity on a model partition, the higher the accuracy. This implies using entropy calculation in the 

C5.0 algorithm, which forms rules representing data majority [30]. 

Based on decision tree structures, both X and Y models make land slope attribute the root node. This 

shows that the land slope attribute's gain value is the highest compared to other attributes. The high gain value 

in the C5.0 algorithm is influenced by the entropy value obtained through calculating an attribute's diversity. 

This means that the land slope attribute's diversity level is lowest for both models, resulting in the highest gain 

value, which is then used as the root node. Referring to previous research, land slope attribute use as the root 

node also strengthens the same result obtained using the spatial decision tree algorithm. In contrast to attribute 

involvement in decision-making, if all attributes were involved in previous studies, three attributes were not 

involved in this study's two models. The three attributes are cation exchange capacity, soil mineral depth, and 
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rainfall, as shown in Table 5 and Table 6. This non-involvement means that three attributes are not essential 

for determining land suitability class [16], which in this study is commodity soybean. 

Based on the X and Y models analysis, it is found that in total, model X partitions can be said to be 

better than model Y partitions. This is because the total accuracy obtained using 5-fold cross-validation of 

training data and test data is not significantly different, namely 1.41%. That is, the rules generated by model X 

can represent more test data compared to model Y. However, compared to previous studies, which obtained an 

accuracy of 92.37% [13], two models produced in this study are better. Based on this, it can be said that the 

C5.0 algorithm has better performance than the spatial decision tree algorithm. Furthermore, based on model 

X analysis, a partition model in iteration 4 is the best partition, which yields 15 land suitability rules for 

soybean. For example, the rules that are formed are as follows: 

a) IF land slope = steep OR very steep AND soil texture = very smooth OR smooth OR slightly smooth OR 

rude THEN land suitability class = N, not suitable 
b) IF land slope = steep AND soil texture = slightly rude AND temperature <= 25.02 THEN land suitability 

class = N, not suitable 
c) IF land slope = steep AND soil texture = slightly rude AND temperature > 25.02 THEN land suitability 

class = S3, marginally suitable 
d) IF land slope = very steep AND soil texture = slightly rude AND rainfall <= 163.26 THEN land suitability 

class = S3, marginally suitable 
e) IF land slope = very steep AND soil texture = slightly rude AND rainfall > 163.26 THEN land suitability 

class = N, not suitable 
Overall, the resulting rules from the X and Y models do not contain land suitability classes S1. These 

results can be due to the small amount of sample data for class S1, so that the C5.0 algorithm does not consider 

it to represent the data majority. This is supported by the land suitability classes distribution in Figure 2, which 

shows that the number of S1 classes is only 1 out of 388. 

 

3.3.  Soybean land suitability map 

The rule results are obtained from the best model, then visualized into the spatial map. Visualization 

is applied to land and weather characteristics data in Bogor and Grobogan Regency to see the difference 

between the model and BBSDLP. The comparison soybean land suitability map of BBSDLP and model X in 

Bogor and Grobogan Regency is shown in Figure 3. 

 

 
Figure 3. Land Suitability Maps of (a) BBSDLP and (b) Model X Soybean in Bogor Regency, as well as (c) BBSDLP 

and (d) Model X in Grobogan Regency 
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In Figure 3, it is known that there has been a significant change, namely S1 class absence in map 

version of model X in Bogor Regency, while the BBSDLP version actually exists. This difference can be seen 

from the red polygon edges in Figure 3 (b), which is different from the actual data from the BBSDLP version 

in Figure 3 (a). This is an implication of the obtained rules that do not contain class S1. In contrast to the 

soybean land suitability map in Grobogan Regency, where there is no difference between the model version in 

Figure 3 (c) and the BBSDLP version in Figure 3 (d), it means that rules generated can classify the entire 

Grobogan dataset correctly. Furthermore, the data diversity level in Bogor Regency, which is higher than that 

of Grobogan Regency, can also cause errors in the resulting rules, so that when applied to the test data, the 

result is different from the actual data. As a follow-up to provide information for the soybean land suitability 

class, each land suitability area's calculation was carried out using the ST_Area function in PostgreSQL. 

Soybean land suitability class area in Bogor and Grobogan Regency can be seen in Table 7. 
Table 7. Area of Soybean Land Suitability 

Land suitability class 

Area Total (ha) 

Bogor Grobogan 

BBSDLP Model X BBSDLP Model X 

S1, highly suitable 881.48 - - - 
S2, moderately suitable 53,069.2 55,158.23 10,697.27 10,697.27 

S3, marginally suitable 153,165.2 159,461.96 180,365.14 180,365.14 

N, not suitable 90,963.47 83,459.17 15,227.66 15,227.66 
Settlement area - - 1,033.64 1,033.64 

Water body 943.46 943.46 104.09 104.09 

 

In Table 7, there are wide differences in soybean land suitability classes between the model results 

and the BBSDLP version, especially in Bogor Regency. These differences include the absence of S1 class 

based on the model results and an increase in land suitability for S2 and S3 classes. This difference implies the 

accuracy result obtained, namely 96.91%, which means that not all data can be predicted correctly. In general, 

based on Table 7, most soybean land suitability classes in Bogor Regency and Grobogan Regency are S3, N, 

and S2, respectively. To determine soybean agriculture area development in Bogor Regency and Grobogan 

Regency, it can prioritize S2 and S3 class areas as a priority. Furthermore, based on the Food and Agriculture 

Organization (FAO), a land suitability class can be improved by improving land quality [31], such as S2 classes 

can be upgraded to S1. Land quality improvement can be made by adjusting a value based on planting criteria. 

For example, soil pH is initially acidic and then changed to slightly acidic (planting criteria for class S1) by 

adding its nutrients [7] and other attributes. 

 

4. CONCLUSION 

This study produced two soybean land suitability prediction models using the C5.0 algorithm in the 

study area of Bogor and Grobogan Regency. The best model is obtained based on the 5-fold cross-validation 

evaluation method, which results in training data accuracy is 98.58%, while test data is 97.17%. Both models 

make land slope attributes the root node in the decision tree structure, where the best model produces 69 rules. 

In total, the two models also do not involve the three attributes: cation exchange capacity, soil mineral depth, 

and rainfall. The attributes that are not involved in the model indicate that these attributes are not very important 

to determine soybean land suitability. The land suitability recommendation generated in this study can be used 

as recommendations for related parties in expanding soybean farming areas to increase soybean production. 

Developments for further research that can be carried out include 1) To obtain more reliable accuracy value, 

tests can be carried out on land suitability data in other regencies, 2) Geographical information systems for 

more precise mapping by involving legally cultivable land data ( not protected forest areas / special areas that 

cannot be planted according to state decrees) as well as more accurate information on human settlement. 
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