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 Computer assisted medical diagnosis is a major machine learning problem 

being researched recently. General classifiers learn from the data itself 

through training process, due to the inexperience of an expert in determining 

parameters. This research proposes a methodology based on machine 

learning paradigm. Integrates the search heuristic that is inspired by natural 

evolution called genetic algorithm with the simplest and the most used 

learning algorithm, k-nearest Neighbor. The genetic algorithm were used for 

feature selection and parameter optimization while k-nearest Neighbor were 

used as a classifier. The proposed method is experimented on five 

benchmarked medical datasets from University California Irvine Machine 

Learning Repository and compared with original k-NN and other feature 

selection algorithm i.e., forward selection, backward elimination and greedy 

feature selection.  Experiment results show that the proposed method is able 

to achieve good performance with significant improvement with p value of 

t-Test is 0.0011. 
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1. INTRODUCTION 

Recently, the application of machine learning in medical purposes is a major in demand for medical 

applications. Mostly, diagnosis methods in medical field are based on data classification approaches and 

systematized [1]. Use of Computer-Aided Diagnosis (CAD) systems can assist doctors to diagnose patient 

illnesses [2], Classification is the most commonly performed CAD system among the various tasks that can be 

performed [3]. In an effort to ensure accurate diagnostic assistance, the main problems with the classification 

of medical datasets can be categorized as complex optimization problems [1]. 

Research that seeks to optimize both data and algorithms with the aim of increasing the accuracy of 

data classification to identify potential patients has been carried out by various researchers [4]. In the recent 

studies, metaheuristic algorithms such as particle swarm optimizations [1] [5] [6] or genetic algorithms [7] [8] 

[9] and also data mining techniques such as neural networks [10] [11] [12] or k-nearest Neighbor [13] [14] [15] 

were applied to perform classification of medical data and obtained with very satisfy results. 

k-Nearest Neighbor (k-NN) algorithm is a method that uses a supervised Algorithm (Wu, et al., 2008). 

Which is a classification method that is easy to understand and implement [16] and simplest amongst of all 

machine learning algorithms (Gorunescu, 2011). The closest object (k) around a classified object is a 

representation of the k-NN algorithm [17]. A dataset that has multimodal classes is very suitable for 

implementing the k-NN algorithm [18] as well as applications where many class labels on single object [16].  

There are several major problems that affect the performance of the k-NN algorithm. One of them is 

the selection of the k parameter [16]. The result can be sensitive to noise points, if k is too small, that may lead 

the algorithm toward overfitting [19]. On the other hand, the neighborhood may include too many points from 

other classes if k is too large, that may lead to low accuracy [20]. Selection of k based on data is the best choice 

[21].  

http://u.lipi.go.id/1466480524
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Another key issue is the presence of noise or irrelevant features in medical datasets which can greatly 

degrade the accuracy of the k-NN algorithm [22], or inconsistency is found between the scale of the features 

and its importance [21]. 

High dimensional data commonly involved in medical dataset [23]. Classification complexity will 

increase and reduce the effect of the model when using high-dimensional data [24], efficiency of most machine 

learning algorithms will deal with a serious obstacle. “Curse of dimensionality”, is a term to this obstacle [25]. 

While retaining important information, the data dimension needs to be reduced. The major keys of dimensional 

reduction are feature extraction [26] and feature selection [27]. High computational costs are required during 

the data mining process to handle large data sets. Effectively reduce time and memory [28] and cut computing 

costs when reducing dimensions [25]. 

Reducing the number of features while maintaining acceptable classification accuracy is the main goal 

of dimension reduction [7]. The effectiveness of the resulting classification algorithm is very influenced by the 

feature selection [29]. In some cases, the accuracy of future classification can be improved based on the result 

of feature selection [25]. 

Given optimized a subset and a set of candidate features that performs the best under classification 

system is the problem of feature selection [29]. To perform optimization, genetic algorithms are often used. 

Genetic algorithms are sophisticated optimization [30] and have less of a tendency to become stuck in local 

minima [21]. In machine learning, to evaluate the fitness of other algorithms, genetic algorithms may be used 

[22]. Genetic algorithms are easily parallelizable and have been used for classification as well as other 

optimization problems and a wide range of optimization depending on the objective function (fitness) [31].  

In this research, we integrates genetic algorithm for features selection and parameters optimized k-

NN applies to classify five benchmarked medical datasets, namely, Wisconsin breast cancer diagnostic and 

prognostic [32], diabetic retinopathy Debrecen [33], cardiotocography [34] and SPECTF image of heart disease 

[35]. There are several reasons to choose the Genetic Algorithm: The 'universal optimizer' as a capability of 

the genetic algorithm can be used to optimized problems in various fields, genetic algorithms can set parameters 

correctly through the right balance between exploration and exploitation. And the main feature is the simplest 

and easiest to implement. Main objectives of this research are to improve accuracy of five benchmarked 

medical datasets classification by applying genetic algorithm as feature selection and to improve performance 

of k-NN classifier algorithm by optimizing k value using genetic algorithm.  

 

 

2. METHODS 

This research proposes a methodology based on data mining paradigm. This paradigm integrates the 

search heuristic that is inspired by natural evolution called genetic algorithm with the simplest and the most 

used learning algorithm, k-nearest Neighbor 

 

2.1. Datasets 

This research is experimented on five medical datasets obtained from University California Irvine 

(UCI) Machine Learning (https://archive.ics.uci.edu/ml/datasets.html). The details of these medical datasets is 

listed in Table 1 that contains number of instances, features and classes. The training and testing datasets are 

randomly generated. 

1. Wisconsin Breast Cancer (Diagnostic), the dataset is available at the University of Wisconsin. It contains 

569 instances with 32 features which are used to predict benign or malignant growths [32]. 

2. Wisconsin Breast Cancer (Prognostic), the dataset is obtained from University of Wisconsin. There are 

198 instances with 20 features which are used to predict recurrent and nonrecurrent [32]. 

3. Diabetic Retinopathy, this dataset was collected from University of Debrecen and contains about 1151 

instances with 20 features which are used to predict whether it is contain diabetic retinopathy or not [33]. 

4. Cardiotocography (CTGs), this dataset was created by Diogo Ayres-de-campos at the University of Porto. 

It contains 2126 instances with 23 features which are used to predict fetal state [34]. 

5. Heart Disease (SPECTF), this dataset is based on data from University of Colorado. It contains 45 features 

with 267 instances which are used to identify whether patients are normal or not [35]. 

  

https://archive.ics.uci.edu/ml/datasets.html
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Table 1. Description of datasets 

Dataset 
Number of 

instances 

Number of 

features 

Number of 

classes 

Wisconsin Breast Cancer (Diagnostic) 569 32 2 

Wisconsin Breast Cancer (Prognostic) 198 34 2 
Diabetic Retinopathy Debrecen 1151 20 2 

Cardiotocography (CTGs) 2126 23 3 

Heart Disease (SPECTF) 267 44 2 

 

Algorithm 1. Basic Genetic Algorithm 

Begin 

INITIALIZE random candidate solutions within population; 

EVALUATE each candidate; 

WHILE (stop condition is satisfied) DO 

SELECT chromosome; 

RECOMBINE pairs of chromosome; 

MUTATE offspring; 

EVALUATE new candidates (offspring); 

SELECT individual candidate for next generation; 

End 

 

2.2. Genetic Algorithm 

Genetic algorithm (GA) is a heuristic, parallel and stochastic, parallel search algorithm inspired by 

Charles Darwin that introduced principle of natural selection [36]. Holland were the first researcher that 

propose GA for the very first time [37]. Mimicking a computational process whereby natural selection through 

biological processes is the basis of the concept of genetic algorithms. Through this process the stronger 

individual is more likely to become the winner in a competitive environment [38] and implement them to solve 

research and business problems [39].  

Mate selection, reproduction, mutation and cross-cutting of genetic information are factors that have 

inspired genetic algorithm frameworks. The following three factors are used by genetic algorithms: [21] 

1. Selection 

Choosing which chromosome to reproduce is the selection operator's reference. Each chromosome 

(candidate solution) will be evaluated using a suitability function, Possibility of being selected to reproduce 

depends on the quality of the chromosomes, the better the chromosomes, the more likely the candidate will 

be selected. 

2. Crossover 

Creates two new offspring by selecting a random locus and exchanging the order left and right of that locus 

between the two chromosomes selected during selection. this process is called recombination which is done 

by the crossover operator. For example, in a binary representation, two strings 00000000 and 11111111 can 

be crossed at the sixth locus of the string respectively to produce two new offspring 00000111 and 

11111000. 

3. Mutation 

The bits or digits at a particular locus on a chromosome are randomly changed by mutation operators. For 

example, after crossing each other, a binary string can mutate at locus two to 10111000 from the original 

binary string 11111000. This stage of mutation avoids the incorporation of prematurely into the local 

optimum and provides new information on the genetic pool. 

 

2.3. k-Nearest Neighbor 

k-Nearest Neighbor (k-NN) algorithm is a method that uses a supervised Algorithm (Wu, et al., 2008). 

Which is simplest [21], can be used for prediction and estimation, but is most often used for classification. k-

NN algorithm is instance-based learning, where unclassified data can be found by simply comparing it with 

the most similar data in the training set [39]. 

k-NN classifies objects based on the nearest k number of objects around them [21] then determining 

labels based on the dominance of certain classes in its environment [16]. Parameter k comes from most similar 

pieces of data from our known dataset[17]. To conclude, the k-NN is the simplest among all machine learning 

algorithms, simple majority vote of its neighbor is used to classifying an object [21] from the k most similar 

pieces of data [17]. 

Distance metric use to defined “Closeness” between object with its neighborhood, such as Euclidean 

distance or Manhattan distance [22]. To construct the algorithm, we need the following items (algorithm input):  
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Algorithm 2. Basic k-Nearest Neighbor Algorithm 

Begin 

INITIALIZE D, training set; T, test object; k, neighborhood; 

FOREACH d IN D DO 

COMPUTE distance between T and d; 

SORT the computed distance ascending; 

SELECT k nearest object corresponding to k nearest distance; 

EVALUATE most frequent class label among k nearest object; 

End 

 

 
Figure 1. Proposed Method 

 

1. Training set consist of labeled data [21] used for evaluating an unlabeled data[16]; 

2. Distance metric to calculate similarity between objects [21] used to compute the closeness of objects [16]; 

3. Value of k, the number of neighborhood [16] belonging to the training set, based on which we will achieve 

the classification of a new object [21]; 

4. A Method to determine the class of the target object based on the classes and distances of the k nearest 

neighbor [16]. 

By using the following three requirement of the algorithm, a new (unlabeled data) object will be 

classified: [21] 

1. Between new object and every records in training set, compute distance (similarity) using distance metrics; 

2. Sort the distance from every records in training set based on shortest distance, identify k nearest object. 

3. Find label that appears most frequently among k nearest object, assign the label using majority voting. 
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2.4. Proposed Method 

The proposed method integrates genetic algorithm for features selection and parameters optimized k-

NN applies to classify five benchmarked medical dataset that explained in Table 1. The proposed method can 

be seen in Figure 1. An early data processing begins by dividing five datasets into training and testing data 

using split validation, respectively. k-NN with default parameters is applied for each training data to results 

initial performance.  

Genetic algorithms are applied for each training data for features selection. Features selection is used 

to find the features that best represents the class on that dataset. Parameters optimized k-NN then applied to 

training data that has been feature selected. After that, validate the models which are produced by k-NN, 

calculate how much accuracy generated by the model tested in testing data. Repeat the process of selecting 

features using genetic algorithms, until optimal features are obtained. 

The results obtained from the performance of the features selection by genetic algorithm are then 

compared with other algorithms that can be used for feature selection i.e., backward elimination [40] [41] [42], 

forward selection [43] [44] [29] and greedy feature selection [45] [46] [47].  

 
Table 2. Experiment Results of Proposed Method and Basic k-NN 

Datasets Proposed Method Basic k-NN 

breast-cancer (D) 99.2.% 94.15% 

breast-cancer (P) 86.44% 78.75% 

diabetic-retinopathy 71.69% 61.16% 

cardiotocography 98.59% 90.91% 

heart (SPECTF) 87.5% 77.5% 

 

This comparison is to determine whether performance of genetic algorithms is better than any other 

algorithms in performing feature selection. The results obtained from proposed method then tested with results 

obtained from k-NN with default parameters to determine whether the proposed method performance results 

improved the accuracy of the five datasets significantly using a t-test [13] [48] [31] significance test. 

 

3. RESULT AND DISCUSSION 

This research conducted several experiments, experiments using the k-NN algorithm with 

unoptimized parameters of the five unselected features datasets, experiments using the k-NN algorithm with 

optimized parameters of the five datasets in Table 1 that have not been selected features dan experiments using 

the k-NN algorithm with optimized parameters of five datasets in Table 1 which have been selected feature 

using genetic algorithm, backward elimination, forward selection dan greedy feature selection.  

All experiments use split validation to split the datasets randomly. The experiment using default 

parameters configuration for genetic algorithm, backward elimination, forward selection and greedy forward 

selection. The experimental results set forth in Table 2 stated that the proposed method can improve the 

accuracy of the five benchmarked datasets with a 5% - 10% increase in comparison with the k-NN algorithm 

without optimization and features selection.  

Highest improved performance was obtained from the classification of the Diabetic Retinopathy 

dataset with an increase of 10.53% of 61.16% with the most optimal k is 86. Meanwhile, the lowest improved 

performance was obtained from the classification of Breast Cancer Diagnostic dataset with only 5.05% increase 

from 94.15% with the optimal k is 8. 

Improved performance on Breast Cancer Prognostic dataset is 7.69% from 78.75% with optimal k is 

57, Cardiotocography datasets increased by 7.68% from the original 90.91% with optimal k is 23 dan SPECTF 

Heart dataset increased by 10% from 77.5% with the most optimal k is 23. Based on experiment results in this 

research, t-Test were used to determine proposed method can improve classification significantly. t-Test Paired 

Two Sample for Means were used in results between before and after using proposed method. 

The test results of t-Test generate that the proposed method can improve the performance of k-NN in 

terms of accuracy significantly in all datasets marked with p value of t-Test < 0.05. t-Test results can be seen 

in Table 4. The results of the experiments described in Table 3 stated that the proposed method is superior 

when compared to other feature selection algorithms across all benchmarked datasets. The results on backward 

elimination and forward selection were slightly lower 0.37% - 5.96% when compared to genetic algorithm, 

and the lowest results obtained by greedy feature selection. Based on experiment results, to determine whether 

feature selection can improve performance in the classification of medical datasets significantly. t-Test Paired 

Two Sample for Means were used in results obtained from all features selection algorithms. 

The test results of t-Test generate that the feature selection can improve the performance of k-NN in 

terms of accuracy significantly in all datasets except greedy feature selection marked with p value of t-Test < 

0.05. t-Test results for significance of using features selection can be seen in Table 5. 
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Table 3: Experiment Results of Featured Selection k-NN 

Datasets Proposed Method Forward Selection Backward Selection Greedy Selection 

breast-cancer (D) 99.2% 98.83% 97.08% 92.4% 

breast-cancer (P) 86.44% 84.75% 83.05% 79.66% 

diabetic-retinopathy 71.69% 68.99% 69.28% 68.12% 

cardio-tocography 98.59% 91.22% 92.63% 79.78% 

heart (SPECTF) 87.5% 86.25% 85% 82.5% 

 
Table 4: t-Test Results of Proposed Method compared with k-NN 

  Proposed Method Normal 

Mean 88.684 80.494 
Variance 125.98713 170.19713 

Observations 5 5 

Pearson Correlation 0.995007081 

  

df 4 

t Stat 8.376046049 

P(T<=t) one-tail 0.000555628 
t Critical one-tail 2.131846786 

P(T<=t) two-tail 0.001111256 

t Critical two-tail 2.776445105 

 

k-nearest Neighbor algorithm is easy to implement [21] and high accuracy [17] for a variety of 

applications. Compared to any other complex algorithms like neural network and support vector machine, k-

NN results still remarkable. From the results of this research, it can be concluded that parameter optimized k-

NN combine with genetic algorithms as feature selection is superior when compared to other feature selection 

algorithms on five benchmarked medical datasets. 

 
Table 5: t-Test Results of Featured Selection Classifier compared with k-NN 

Algorithms p Value of t-Test Results 

Genetic Algorithm 0.0011 Significant (p<0.05) 

Forward Selection 0.02 Significant (p<0.05) 

Backward Elimination 0.01 Significant (p<0.05) 

Greedy Feature Selection 0.99 Not Significant (p>0.05) 

 

4. CONCLUSIONS 

Genetic algorithms are applied to select features and optimizing k parameter for k-nearest Neighbor 

to improve accuracy of five benchmarked medical datasets. Proposed method is proven effective to be able 

improve accuracy, and furthermore the different test results among five datasets produce significant difference. 

Comparison of the feature selection algorithms are proposed to compare the accuracy of the results 

among genetic algorithms, forward selection, backward elimination and greedy feature selection. Genetic 

algorithms are proven to have the highest accuracy compared with any others feature selection algorithms. 

In this research, in general, genetic algorithms applied to select features and optimizing parameters to 

improve accuracy of five benchmarked medical datasets. In further research, some things can be applied to 

enhance the research, which uses other algorithms for parameter optimizing or other methods to reduce 

dimensionality of medical datasets. 
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