

Implementation of Finding Shortest Route for Pharmacy Location Using A* Algorithm

Fransiskus Panca Juniawan¹, Dwi Yuny Sylfania², Dini Agrina³

^{1,2,3}Informatics Engineering, STMIK Atma Luhur, Pangkal Pinang, Indonesia

¹fransiskus.pj@atmaluhur.ac.id, ²dysylfania@atmaluhur.ac.id, ³1411500074@mahasiswa.atmaluhur.ac.id

Abstract- The number of pharmacies in the Pangkalpinang City has increased rapidly. This is directly proportional to the needs of the people of Pangkalpinang City to fulfill the health needs, buy medicine or divert doctor's prescriptions. This is a debate for people who do not know the location of pharmacies in this city. Practically, people can just go to a pharmacy with a location that far from user location, even though there is a pharmacy near the user. This is because there is no pharmacy information location in the Pangkalpinang City. To solve this problem, proposed a system that can display the location of all pharmacies in the Pangkalpinang City. In addition, the system can search the shortest path from the user's location to the nearest pharmacy location around using the A* algorithm. This algorithm was chosen because its advantages that are able to produce optimal solutions according to the expected heuristic functions. The results of the testing are that the system can optimize and be able to search the shortest path from the user's location to the nearest pharmacy.

Keywords- A* Algorithm, Geographical Information System, Shortest Path, Pharmacy

I. INTRODUCTION

Nowadays the pharmacy turns out into crucial instrument in health sector. It is accordance with the increased-number of pharmacies that reached approximately 63 widespread all over Pangkalpinang city[1]. It is also indicated that community's healthy lifestyle awareness and the pharmacy needs has increased. Moreover, in line with rise of the number of pharmacies, it is undoubtedly the information requirements linked with the pharmacy location in Pangkalpinang city has also demanded at its peak. The community needs a system that has capability to provide not only detailed information related to pharmacy but also the mapping-tech that shows precise location of each pharmacies in the city.

To overcome prior mentioned concern in this research, the researchers are proposed the utilization of Geographical Information System or abbreviated as GIS which is a databased-technology that integrate the geographical data process or its linked in the object position in earth surface such as taking some typical visualization. It is also offers geographical analysis capability through its map picture [2]. At this time, GIS can be implemented to a web-based system with its advantages such are: to reduce IT staffs operational process, and its excellency in both integration and visualization of Database Management System (DBMS), and effortless implementation process [3].

The GIS implementation in pharmacy mapping has not enough yet. A system could be more invented with adding some of the shortest route search method. Furthermore, this method is useful to user when they search nearest pharmacy to them. One of the shortest route methods is called A* Algorithm (A-Star).

This algorithm is included in the category of search method based on information or known as Informed Search Method. The A-Star Algorithm tends to search fastest route that will traveled from the starting point to the pinned

object or destination. Moreover, this algorithm is selected based on its advantages such as Path Finding function and Graph Traversal in its calculation process [4].

The A* Algorithm that has been widely implemented in the research as the solution for every concerning troubleshoot. In year 2018 that held the research in analyzing the comparation of A* Algorithm and the Dynamic Pathfinding Algorithm (DPA) which implemented for NPC Car Racing Game. The results from its experiment showed that NPC of two algorithm combination has better value than the sample data which is only used DPA Algorithm. Meanwhile, the obstacle position and the curve of the NPC track has also impacted towards DPA [5].

The research has conducted the comparation of robotic-moving track planning algorithm that implemented to dynamic circumstances. It is using both Ant Colony Optimization (ACO) and A* algorithms. Moreover, the test result to a simple environment with its static obstacle obtains A* Algorithm better than ACO as can be seen from its traveling time and mileage. Furthermore, less-obstacle test that seen from those mileages, shows the differences around 0,57% while the result from with-obstacle test obtains difference about 9%. To a dynamic environment test which the target and obstacle are moving at the same time with certain pattern, obtains result that ACO algorithm is better because it can find the optimum shortest route [6].

For further, A* algorithm applied to *Strip Packing Problem* (SPP) in a convection company to optimize resources and reduce the left-over material. The test result from it shows that the efficiency of resources consumption reach 68% that is impacted from mapping factor of smallest scale to the biggest one iteratively so that there is possibility of residual inter-pattern left unused[7]. The A* algorithm is also use for searching shortest route inter-building and or rooms in the Bahteramas Hospital. Its result

is application-based that could determine shortest route that applied in Adobe Flash *Actionscript 3* language program-based Android [8].

It is also used as the determination of culinary travel shortest route in Bandarlampung. The test result is a manual calculation and the application is valid with similar route that around 1,5 Kilometers [9]. A* algorithm mainly applied to search shortest route towards *Hexapod* robot. From the test result, it has proven that A* algorithm could operate in maximum way in determined shortest route from it. Furthermore, success-rate of this robot that can arrive to an object/destination from its less-obstacle track in an arena. The difference of its process accomplishment in a lower failure-rate of the *hexapod* to its pinned destination is 1 *grid* meanwhile the bigger value is 3 *grid* [10]. Although it is also can be use as the search engine to search nearest *Bus Rapid Transit* (BRT) bus stop in Semarang city. from the calculation result, it is summed up that the experiment held around 20 times with different locations that A* algorithm has 100% accuracy in determine both 'Get in' and 'Get out' nearest bus stop. Meanwhile for the record, the Global Positioning System (GPS) has also in precise accuracy[11].

The A* algorithm is also applied as the problem-solver in a game. In 2017, a research has conducted that applying A* to an android-based labyrinth adventure game and obtained some of research results. It is shows that if the player were in trouble when finding the right track to a rabbit's food, so they can use 'help' symbol that automatically activated shortest route search function operated by A* algorithm (A Star). Moreover, the result is that euclidean distance to directly headed location of rabbit's food and the player could arrived as soon as possible [12] A role-playing game or RPG with hygienic plant genre is also can applying A* algorithm. As from the early phase of the test that conducted its experiment around 9 times with the efficiency differences is about 86% in a minimum search and 77% to its test result average [13] The research also contains some reviews from the installation of mesh Pathfinding navigation in which A* as the Artificial Intelligent alternative for villain character in Pacman. Path is designed by using NavMesh concept. As from the test result that have conducted comparison with Djikstra Algorithm, then obtained result showing A* algorithm can make precise movement from villain character is faster to catch Pacman in 43 steps to 348 steps in comparison [14].

Furthermore, from the comparison of prior research, it is known that A* algorithm can be as the solution to determine shortest route to arrive at the precise destination. The result from its installation is also appropriate with conducted research

II. METHOD

This research consists from several phases such as portrayed in figure 1.

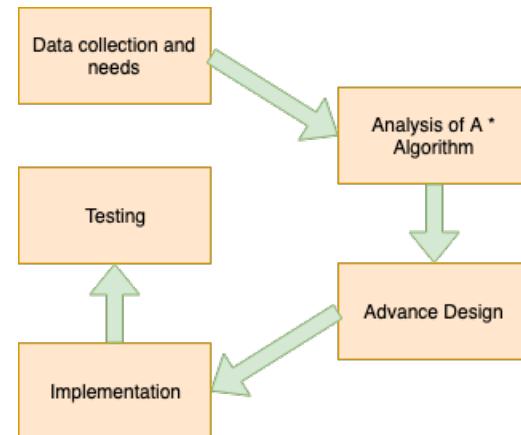


Figure 1. Research Phase

A. Collecting Data and Requirement

This phase is collecting data of pharmacy in Pangkalpinang city, such are pharmacy's information, locations and its coordinate. Besides that, direct interview section held towards some of the community related with the trouble or problem that faced when they search location of the pharmacy. Literature study is also conducted to its reference, journal articles or another article in similar theme with this research.

B. A* Algorithm Analysis

A* algorithm has mainly applied in the shortest route search application. This is also provide appropriate balance between speediness and accuracy[5].

A* algorithm has three values to each node n [6]:

1. Heuristic value

To calculate *heuristic* distance between two points is using the formula:

$$h(n) = \sqrt{(X_n - X_{goal})^2 + (Y_n - Y_{goal})^2} \quad (1)$$

2. Minimum Cost from early node movement to n , g -value $g(s)$

3. Minimum Cost early node movement through n to destination node (target), with formula:

$$f(n) = g(n) + h(n) \quad (2)$$

Notes:

- $f(n)$ is a cheapest estimated cost solution *node n* to reach the object.
- $g(n)$ is *path* cost or travel
- $h(n)$ is an estimation from *node n* to destination

The illustration from A* algorithm calculation as shown in figure 2

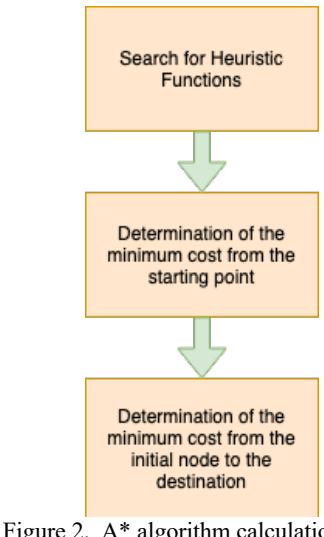


Figure 2. A* algorithm calculation chart

C. Design

This part is conduct system designing using *tool UML*.

D. Implementation

In this phase, applying the A* implementation to a web-based system as early stage of the research.

E. Test

The test is held to assess the under-way system. It is conducted by *alpha* and *beta* system.

III. RESULT AND DISCUSSION

A. A* Algorithm Calculation

To conduct the A* algorithm calculation, we need to change existing distance into a *node/point* form then converted into matrix *graph* to make the calculation easier.

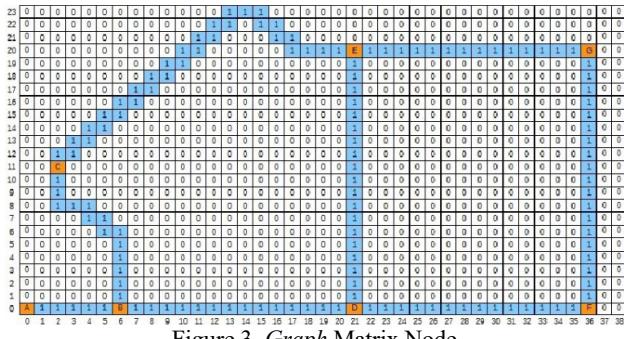


Figure 3. Graph Matrix Node

From figure 3 above, we acquired A point coordinate A = (0,0); B = (6,0); C = (2,11); D = (21,0); E = (21,20); F = (36,0); G = (36,20).

B. Determine Heuristic values of each node

To obtain *heuristic* values, it is required some formulas (2) as follows:

- A (0,0) to B (6,0)

$$h(n) = \sqrt{(0 - 6)^2 + (0 - 0)^2} = \sqrt{36} = 6$$
- B (6,0) to C (2,11)

$$h(n) = \sqrt{(6 - 2)^2 + (0 - 11)^2} = \sqrt{137} = 11,7$$

- B (6,0) to D (21,0)

$$h(n) = \sqrt{(6 - 21)^2 + (0 - 0)^2} = \sqrt{225} = 15$$
- C (2,11) to E (21,20)

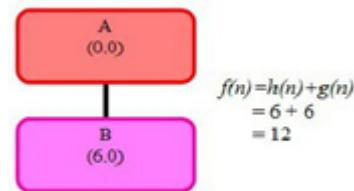
$$h(n) = \sqrt{(2 - 21)^2 + (11 - 20)^2} = \sqrt{442} = 21,02$$
- D (21,0) to E (21,20)

$$h(n) = \sqrt{(21 - 21)^2 + (0 - 20)^2} = \sqrt{400} = 20$$
- D (21,0) to F (36,0)

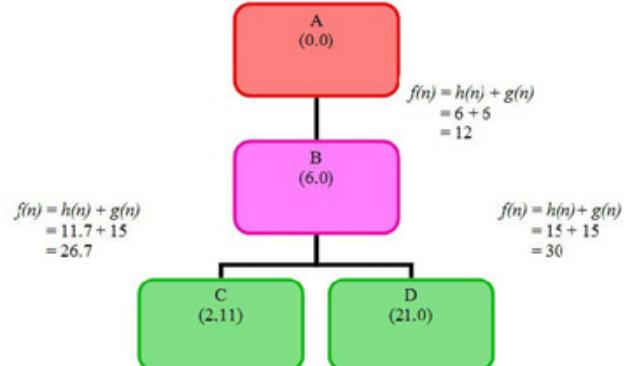
$$h(n) = \sqrt{(21 - 36)^2 + (0 - 0)^2} = \sqrt{225} = 15$$
- E (21,20) to G (36,20)

$$h(n) = \sqrt{(21 - 36)^2 + (20 - 20)^2} = \sqrt{225} = 15$$
- F (36,0) to G (36,20)

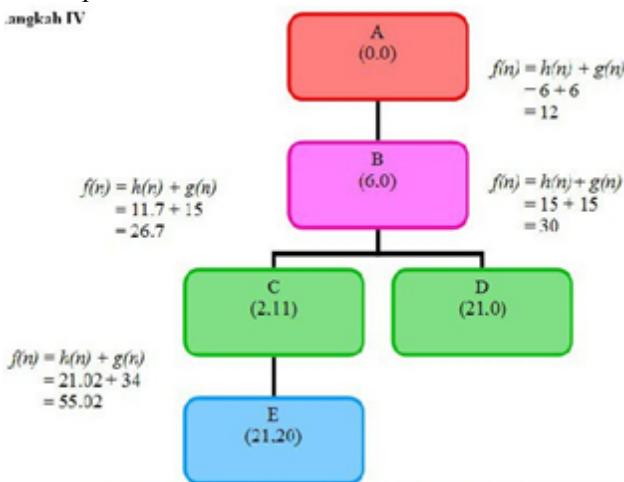
$$h(n) = \sqrt{(36 - 36)^2 + (0 - 20)^2} = \sqrt{400} = 20$$

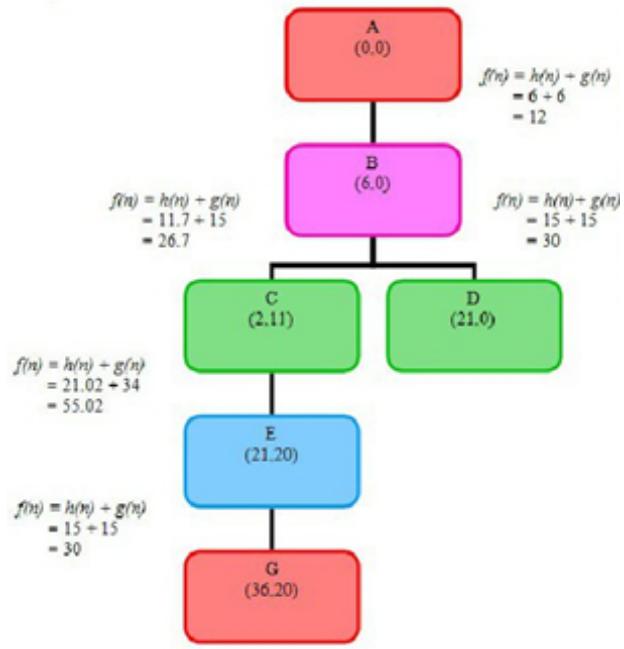

C. Determine $f(n)$

Next phase is to determine $f(n)$ value using formula (1) with using obtained *heuristic* $h(n)$ value


• Step 1

• Step 2


• Step 3


Node B has two branches (C and D) then selected $f(n)$ is a $f(n)$ with smallest cost such as node C.

• Step 4

Langkah IV

• Step 5

After calculating whole $f(n)$, so that we acquired shortest distance total from the possibility of node A to G, where:

$$= 12 + 26.07 + 55.02 + 30$$

$$= 123.72$$

From that result above, we can determine that shortest track/path that traveled are: A – B – C – E – G.

D. System Interface Display

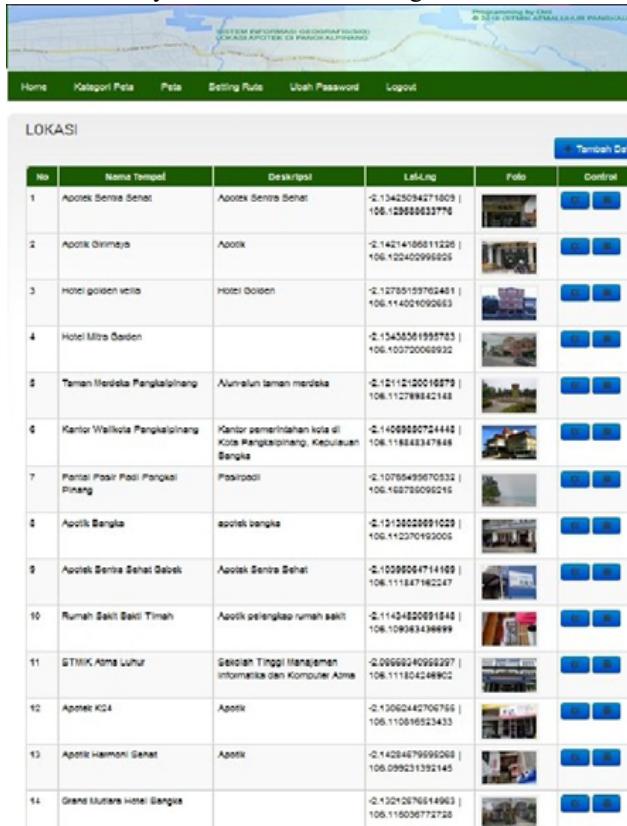
1. Route Search

Figure 4. Route Input Form

Users input their starting position with their targeted pharmacy in this page. The shortest route search result displayed after user clicked 'see route' button.

2. Shortest Route Result

Hasil Pengujian Pencarian Rute Terpendek A star				
Objek Asal	Objek Tujuan	Rute Perjalanan dengan Algoritma A star	Waktu	Jarak
Grand Mutu Hotel Bangka	Apotik Harmoni Sozat	Jl. Soekarno GP No.27, Asam, Rangku, Kec. Pangkal Pinang, Kepulauan Bangka Belitung 33684, Indonesia	6 minit	2.6 km

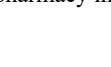
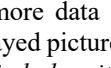
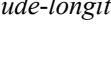

... Hasil Pencarian Rute Jalan Menggunakan Algoritma A star ...

Lokasi Awal	Lokasi Tujuan	Rute Perjalanan A* Star	Jarak Tempuh	Stimulan Linul Peta Rute Perjalanan A* Star
Grand Mutu Hotel Bangka	Apotik Harmoni Sozat	Jl. Soekarno GP No.27, Asam, Rangku, Kec. Pangkal Pinang, Kepulauan Bangka Belitung 33684, Indonesia	2.6 km	Link Jalan

Figure 5. Shortest Route Result

After input process of user location, then the display from shortest route in system is shown as in figure 5. This system can directly provide travel route reference for user to get shortest distance to arrive in destination pharmacy. It is also the mileage of total travel in kilometer unit and some estimated times to get arrive in minutes unit.

3. Pharmacy Location in Admin Page

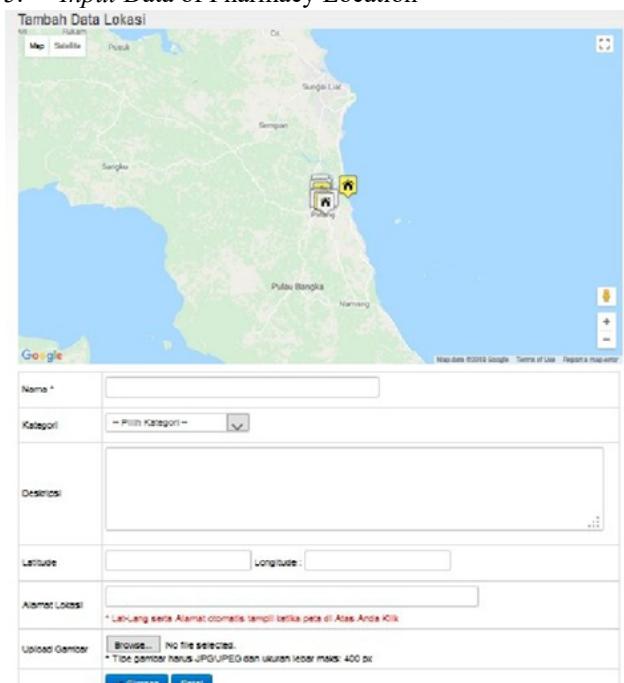




LOKASI					
No	Nama Tempat	Deskripsi	Latitude	Photo	Control
1	Apotek Senja Sehat	Apotek Senja Sehat	-2.13425924271803 106.12986332776		Edit Delete
2	Apotik Grinmayo	Apotik	-2.14214185511226 106.12242999829		Edit Delete
3	Hotel golden veila	Hotel Golden	-2.12785159762481 106.114021090663		Edit Delete
4	Hotel Mitra Garden		-2.1545561995783 106.1027006932		Edit Delete
5	Taman Merdeka Pangkalpinang	Alun-alun taman merdeka	-2.1211210016879 106.112788942148		Edit Delete
6	Kantor Walikota Pangkalpinang	Kantor pemerintahan kota di Kota Pangkalpinang, Kecamatan Bangka	-2.14009800724445 106.118343347648		Edit Delete
7	Pantai Pasir Putih Pangkalpinang	Pasirputih	-2.10785495870312 106.16278509216		Edit Delete
8	Apotek Bangka	apotek bangka	-2.12138205991029 106.112370292005		Edit Delete
9	Apotek Senja Sehat Sabuk	Apotek Senja Sehat	-2.1099604714109 106.111847162247		Edit Delete
10	Rumah Sakit Bakti Timah	Apotik pelengkapan rumah sakit	-2.11434820091848 106.109334398999		Edit Delete
11	STMIK Atma Juhur	Gedean Tinggi Manajemen Informatika dan Komputer Atma	-2.09992409992297 106.1110816523433		Edit Delete
12	Apotek K24	Apotik	-2.13062442706765 106.110816523433		Edit Delete
13	Apotik Harmoni Sehat	Apotik	-2.14284879992068 106.099213291245		Edit Delete
14	Grand Mutuca Hotel Bangka		-2.13212676514963 106.115036772726		Edit Delete

Figure 6. Display of data and information of pharmacy in admin's page

This page is used by admin to add more data and pharmacy location in system. It is also displayed picture of front-side of the pharmacy and its *lattiude-longitude* coordinates.

4. Pharmacy Route in Admin Page



Route					
No	Lokasi Awal	Lokasi Tujuan	Latitude	Alamat	Control
1	Taman Merdeka Pangkalpinang	Apotek Senja Sehat Sabuk	-2.12912822633C38C96	Jl. Gecek No.27, Selindung Baru, Kec. Gecek, Kota Pangkal Pinang, Kecamatan Bangka Belitung 33172, Indonesia	Edit Delete
2	Kantor Walikota Pangkalpinang	Apotik Grinmayo	-2.1297440059121299	Jl. Basuki Rahmat No.9, Buktihutan, Kec. Grinmayo, Kota Pangkal Pinang, Kecamatan Bangka Belitung 33084, Indonesia	Edit Delete
3	Pantai Pasir Putih Pangkalpinang	Apotek Senja Sehat Sabuk	-2.11250826630024	Jl. Raya Pantai Putih, Air Itam, Buktihutan, Kec. Pangkal Pinang, Kecamatan Bangka Belitung 33084, Indonesia	Edit Delete
4	Hotel golden veila	Apotek Grinmayo	-2.131476883883737	Jl. M. H. Thamrin No.13, Melliwang, Rangkul, Kota Pangkal Pinang, Kecamatan Bangka Belitung 33084, Indonesia	Edit Delete
5	Hotel Mitra Garden	Apotik Grinmayo	-2.1343027100044209	Jl. Mentor No.37, Melliwang, Rangkul, Kota Pangkal Pinang, Kecamatan Bangka Belitung 33084, Indonesia	Edit Delete
6	Apotek Bangka	Apotik Grinmayo	-2.1200119172499782	Jl. Gobesimo Hatta, Buktihutan, Kec. Grinmayo, Kota Pangkal Pinang, Kecamatan Bangka Belitung 33084, Indonesia	Edit Delete
7	STMIK Atma Juhur	Rumah Sakit Bakti Timah	-2.12010189069309	Jl. M. H. Thamrin No.13, Melliwang, Rangkul, Kota Pangkal Pinang, Kecamatan Bangka Belitung 33084, Indonesia	Edit Delete
8	Grand Mutuca Hotel Bangka	Apotek Harmoni Sehat	-2.142488203339629	Jl. Bolmin GR No.27, Asam, Rangkul, Kota Pangkal Pinang, Kecamatan Bangka Belitung 33084, Indonesia	Edit Delete

Figure 7. Display of Route Setting in the admin page

In this page, admin can add pharmacy new route such as complete address with its *Latitude-Longitude* coordinates.

5. Input Data of Pharmacy Location

Name *	<input type="text"/>
Kategori	<input type="button" value="Pilih Kategori"/>
Deskripsi	<input type="text"/>
Latitude	<input type="text"/> Longitude: <input type="text"/>
Alamat Lokasi	<small>* Letakkan serta Alamat correctly tempi ketika peta di Atas Anda Klik</small>
Upload Gambar	<input type="button" value="Browse..."/> <small>No file selected.</small> * Tipe gambar harus JPEG/PEO dan ukuran lebih besar 400 KB
<input type="button" value="Simpan"/> <input type="button" value="Batal"/>	

Figure 8 Display of *input* pharmacy location in admin page

Figure 8 describes the display of admin page to add data pharmacy location into system

E. *Alpha Testing*

In this test with using blackbox test method as its alpha. The implementation in finished system is tested and produce some of test results as follows:

Table 1. Blackbox Test

No.	Testing	Result	Validation
1.	User Input	User can well-conducted <i>input</i> to system System is success to provide shortest route	Yes
2.	Search of Shortest Route	search that begin in starting point of user location to pharmacy location destination	Yes
3.	<i>Input</i> pharmacy new location	System is success to keep newest data location into <i>database</i>	Yes
4.	<i>Input</i> Newest Route	System is success to keep newest data route into <i>database</i> System is success to keep newest data	Yes
5.	Edit Newest Location	System is success to keep newest data location that has changed into <i>database</i>	Yes
6.	Edit New Route	System is success to keep new route data that has changed into <i>database</i>	Yes

From the test result, it determined the blackbox test result with using certain formula as follows:

$$N = \frac{Y}{P} * 100\% \quad (3)$$

Notes:

N : Value of Blackbox testing

Y : Number of Positive Validation

P : Number of Question

So that obtained 100% result from Blackbox testing.

F. *Beta Testing*

This test is conducted by distributing questionnaire to user sample. It consists of four question using Likert scale from 1 to 5. The test result is in user's satisfactory-rate to system. Meanwhile the point from proposed question to user as follows:

1. An attractive *user-friendly* system interface.
2. System can help users to search shortest route to a nearest pharmacy from their location.
3. System can fulfill and enrich the information of pharmacy in Pangkalpinang city.
4. System provides simplicity in the process of searching nearest pharmacy.

From each question, researchers determined highest score scale for positive value that 5. It is also to lowest score negative value that is 1. From each respondent answer results, researchers add some formula:

$$Tn = R * Pn \quad (3)$$

Notes:

T_n = Total of value

R = Total respondents

P_n = Selection of Likert numbers score

Add up the total number of T_n in accordance with the Likert scale value that the respondent filled in to get the T_{tot} . Then we determine the interpretation of the calculation score using the formula:

$$Y = Higher Score * number of respondents \quad (4)$$

$$X = Lower Score * number of respondents \quad (5)$$

Insert T_{tot} to search *index* formula percentage (%) with formula:

$$Index \% = \frac{T_{tot}}{Y} * 100\% \quad (6)$$

Notes:

$Index \%$: Percentage value

T_{tot} : Total Score

Y : Higher Score * number of respondents

As well as Likert Scale it has determined the criteria of score interpretation based on the interval around 20% as follows:

Table 2. Interpretation Criteria Based on Interval

No.	Interval Value	Final Result
1	0 - 19,99	Very Disagree
2	20 - 39,99	Disagree
3	40 - 59,99	Average
4	60 - 79,99	Agree
5	80-100	Very Agree

From the calculation using mentioned formula above, this research obtained test result as illustrated in the graphic in figure 9:

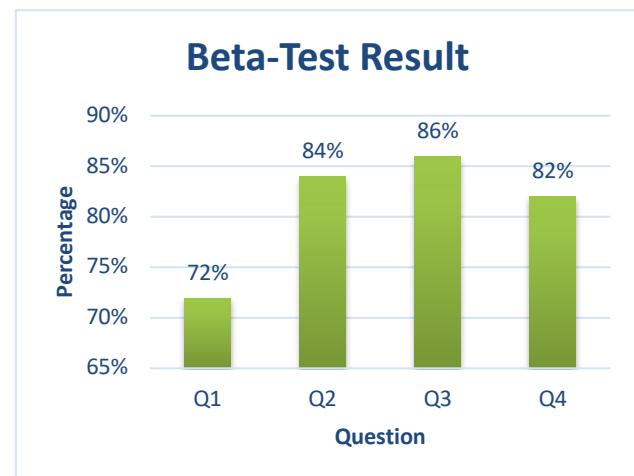


Figure 9. Beta-test result

IV. CONCLUSION

This research has succeeded the development of search system especially in shortest route search for nearest pharmacy that using A* algorithm. From the test result of *alpha* testing that using blackbox testing, it obtained result from this system has reached 100% as expected. Meanwhile, from the *beta* testing with the distribution of questionnaire that involving 10 respondents which have got perfect results. For the example, as the first question regarding the display of system with its *user-friendly* and attractive design then obtained value around 84% in the category of “very agree”. Furthermore, the results from third question regarding system that can fulfill and enrich the information of the pharmacy in town has gained value around 86% in the category of “very agree”. Last but not least, from the fourth question that has gained 82% in the category of “Very agree” towards question of system that provides simplicity in the process of searching nearest pharmacy from user’s location.

V. REFERENCES

[1] R. Prakasa, Augusta, “Di Pangkalpinang Hanya Ada 63 Apotek Yang Terdaftar di Dinas Kesehatan,” 2016. .

[2] R. Rusli, S. Dentari, and I. Pradesan, “Sistem Informasi Geografis Fasilitas Umum Kota Palembang,” Palembang, 2015.

[3] K. Muludi, A. R. Irawati, and E. Priyanto, “Perancangan Sistem Informasi Geografis (SIG) Berbasis Web untuk Penyediaan Informasi Fasilitas dan Personalia di Universitas Lampung,” *J. Komputasi*, vol. 1, no. 2, pp. 167–172, 2013.

[4] Y. Syukriah, F. Falahah, and H. Solihin, “Penerapan Algoritma a* (star) untuk Mencari Rute Tercepat dengan Hambatan,” in *Seminar Nasional Telekomunikasi dan Informatika (SELISIK)*, 2016, no. 1, pp. 219–224.

[5] Y. Sazaki, H. Satria, A. Primanita, and M. Syahroyni, “Analisa Perbandingan Algoritma A * dan Dynamic Pathfinding Algorithm dengan Dynamic Pathfinding Algorithm untuk NPC,” vol. 5, no. 1, pp. 95–103, 2018.

[6] T. Suhendra and T. K. Priyambodo, “Analisis Perbandingan Algoritma Perencanaan Jalur Robot Bergerak Pada Lingkungan Dinamis,” *IJCCS*, vol. 11, no. 1, pp. 21–30, 2017.

[7] I. A. Dewi, A. N. H, and S. D. A. P, “Algoritma A * Dalam Peletakan Pola Pakaian Pada Kain,” vol. 9, no. 4, pp. 443–453, 2017.

[8] J. I. Vol, M. Yamin, and M. B. Talai, “Aplikasi Pencarian Jalur Terpendek pada Rumah Sakit Umum Bahteramas Menggunakan Algoritma A* (A-Star),” vol. 9, no. 2, 2015.

[9] P. Algoritma and A. S. A. Untuk, “Jarak Terdekat Wisata Kuliner di Kota Bandarlampung,” vol. 12, no. 1, pp. 28–32, 2018.

[10] D. Hermanto, “Penerapan Algoritma A-Star Sebagai Pencari Rute Terpendek pada Robot Hexapod,” vol. V, no. 2, 2018.

[11] R. Sistem, “Aplikasi Sistem Pencarian Halte BRT Terdekat Kota Semarang,” vol. 2, no. 1, pp. 430–436, 2018.

[12] P. Studi and S. Informatika, “khazanah informatika Penerapan Algoritma A Star (A *) pada Game Petualangan Labirin Berbasis Android,” vol. 3, no. 2, pp. 57–63, 2017.

[13] A. Pramono, S. Kom, J. Seni, and U. Negeri, “Algoritma Pathfinding A * pada Game RPG Tanaman Higienis,” vol. 1, no. 2, 2015.

[14] M. Zikky, “Review of A * (A Star) Navigation Mesh Pathfinding as the Alternative of Artificial Intelligent for Ghosts Agent on the Pacman Game,” vol. 4, no. 1, pp. 141–149, 2016.