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The	 growth	 of	 the	 healthcare	 system	 has	 posed	 challenges	 in	
safeguarding	 patient	 privacy	 amidst	 the	 storage,	 distribution	 and	
management	of	medical	data.	Blockchain	(BC)	offers	a	promising	result	
by	 securely	 enabling	 the	 exchange	 of	 medical	 information.	 Utilizing	
block	chain	technology	ensures	the	security	of	individuals'	confidential	
health	information.		The	use	of	a	decentralized,	immutable	ledger	using	
blockchain	 technology	 provides	 a	 secure,	 impenetrable	 platform	 for	
storing	and	retrieving	private	medical	 information,	protecting	patient	
privacy.			The	application	of	Modified	Gazelle	Optimization	enables	the	
determination	of	the	shortest	path	for	efficient	data	transfers	within	the	
block	chain	network.	By	adopting	a	specialized	routing	protocol	called	
Modified	Gazelle	Optimized	Routing,	 this	 approach	minimizes	 latency	
and	 maximizes	 throughput,	 facilitating	 continuous	 and	 expedited	
transfer	 of	 health	 data	 across	 the	 network.	 To	 assure	 the	 data	
confidentiality	 and	 integrity	 of	 network	 nodes,	 a	 Distributed	 Ledger	
Technology	(DLT)	trained	Recurrent	Neural	Network	with	Bidirectional	
Long	 Short	 Term	 Memory	 (RNN-BILSTM)	 approach	 is	 implemented.	
This	advanced	Deep	Learning	(DL)	technique	enhances	the	security	and	
reliability	 of	 the	 network	 by	 detecting	 and	 preventing	 unauthorized	
access	 and	 tampering	 attempts.	 The	 proposed	 RNN-BILSTM	 based	
Intrusion	Detection	 System	 (IDS)	 efficiently	 detects	 different	 types	 of	
attacks	with	high	accuracy.	By	analyzing	network	traffic	and	patterns	in	
real-time,	 the	 IDS	 have	 the	 ability	 to	 identify	 and	 mitigate	 harmful	
Internet	 of	 Things	 (IoT)	 requests	 and	 various	 stealthy	 attack	 types,	
including	previously	unknown	 threats.	The	outcomes	of	 this	 research	
prove	an	efficacy	and	consistency	of	the	proposed	strategy	in	enhancing	
the	security,	efficiency	and	performance	matrix	with	an	accuracy	of	97%	
and	 comparative	 analysis	 is	 done	 with	 traditional	 methods,	 thereby	
ensuring	an	availability	and	integrity	of	healthcare	data.	
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1.		 INTRODUCTION		

	The	 healthcare	 system	 is	 composed	 of	 multiple	 organizations	 that	 maintain	 patient	 health	
information	 in	 a	 system	 that	 is	 protected	 by	 a	 number	 of	 regulations.	 	 Safeguarding	 health	 data	 is	
becoming	progressively	challenging	due	to	the	involvement	of	several	hackers	and	the	harm	that	natural	
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disasters	 are	 causing	 to	 system	nodes.	 	 Effective	data	 exchange,	 safeguarding	 safe	data	 storage,	 and	
smooth	provider	collaboration	are	frequently	challenges	for	traditional	healthcare	systems	[1-2].		The	
IoT,	Blockchain,	and	Edge	Computing	are	a	few	examples	of	emerging	technologies	that	have	played	a	
significant	role	in	the	development	of	smart	health	systems	[3].	In	light	of	the	growing	need	for	digital	
data	protection	across	all	domains	in	recent	years,	blockchain	technology	has	emerged	as	one	of	these	
that	 is	 more	 adaptable	 than	 other	 technologies	 [4–7].	 Therefore,	 in	 integrated	 domain	 contexts,	
healthcare	providers	will	benefit	from	an	extremely	protected	health	data	ledger	provided	by	a	cyber-
safeguard	 scheme	 based	 on	 blockchain	 technology	 [8–11].	 For	 efficient	 transfer	 of	 data	 in	 a	 block	
blockchain	network	to	find	the	shortest	path,	various	routing	protocols	are	used.	For	reliable	IoT	data	
transit	in	healthcare	systems,	[12]	presents	a	priority-based	energy-efficient	routing	protocol.	The	most	
important	information	is	the	emergency	situation,	which	needs	to	be	effectively	transferred	as	soon	as	
possible.	Vital	health	data	 is	 intended	 to	be	P2	priority	data,	meaning	 that	 it	 requires	 less	 real-time	
processing	than	emergency	data.	On	the	other	hand,	it	should	appropriately	raise	the	weight	values	of	
the	residual	energy	parameters	and	decrease	energy	consumption	as	the	premise	for	P2	priority	data.		
By	 introducing	a	 configuration	of	 relay	and	 sensor	nodes	attached	 to	 the	human	body	based	on	 the	
postural	movement	of	patients,	an	enhanced	QoS-aware	routing	protocol	for	WBAN	is	developed	in	[13].	
This	allows	the	protocol	to	select	the	most	practical	path	and	significantly	increases	the	network	lifetime.	
Because	it	concentrates	on	enhancing	signal	quality,	packet	delivery,	and	energy	efficiency,	it	adds	more	
complexity.	 In	 order	 to	 minimize	 transfers	 among	 the	 medical	 server	 and	 the	 sensor	 nodes,	 [14]	
introduced	 an	 EERP-DPM	 for	 healthcare	 utilizing	 the	 IoT.	 As	 long	 as	 the	 forecasts	 agree	 with	 the	
readings,	 this	method	enables	 the	sensor	nodes	 to	 forego	sending	their	detected	data	 to	 the	Medical	
Server.	The	dual	prediction	model,	however,	is	unable	to	predict	data	patterns	with	enough	accuracy,	
which	has	the	possibility	to	result	in	less	than	ideal	energy	savings.	A	butter	Ant	optimization	in	fuzzy	
dynamic	 trust-based	 RPL	 protocol	 proposed	 by	 [15]	 improves	 the	 security	 of	 data	 transmission.	 It	
offered	scalable	and	safe	medical	data	transfer.	The	protocol	is	made	more	complex	by	the	addition	of	
fuzzy	logic,	dynamic	trust	management,	and	optimization	algorithms.	Developed	in	[16],	the	optimized	
energy-efficient	secure	routing	protocol	reduces	congestion	of	the	network,	offers	safe	data	transfer,	and	
chooses	 the	 network's	 best	 route.	 On	 the	 other	 hand,	 high	 network	 traffic	 resulting	 from	 improper	
routing	will	negatively	affect	system	performance.		In	order	to	overcome	this	issue,	the	proposed	work	
adopted	 a	 specialized	 routing	 protocol	 called	 Modified	 Gazelle	 Optimized	 Routing.	 This	 approach	
minimizes	latency	and	maximizes	throughput,	facilitating	continuous	and	expedited	transfer	of	health	
data	 across	 the	 network.	 Although	 deep	 learning	 techniques	 will	 be	 integrated	 with	 blockchain	
technology	to	further	enhance	its	potential,	this	provides	a	strong	basis	for	secure	healthcare	solutions.				

By	 producing	 a	 hash	 of	 each	 data	 point,	 [17]	 offered	 a	 CNN-based	 healthcare	 data	 security	
architecture	 that	 uses	 the	 blockchain	method.	 This	 will	 notify	 all	 blockchain	 network	 users	 of	 any	
unauthorized	 data	 modifications	 or	 breaches	 in	 the	 medication	 supply.	 The	 CNN	 method	 has	
demonstrated	 its	 peak	 performance	 with	 varying	 data	 set	 sizes	 in	 this	 instance.	 Blockchain	 has	
scalability	 issues	 despite	 its	 benefits	 for	 security.	 The	 block	 chain	 size	 grows	 as	 the	 number	 of	
transactions	rises,	which	possibly	will	have	a	consequence	on	the	scalability	of	the	system.	In	order	to	
detect	intrusions	by	improving	security,	the	Blockchain-based	African	Buffalo	(BbAB)	system	using	an	
RNN	 model	 is	 developed	 in	 [18].	 Its	 primary	 purpose	 is	 to	 accurately	 detect	 intrusions	 in	 cloud	
environments.	Nonetheless,	it	is	necessary	to	take	into	consideration	an	enhanced	deep	learning	model	
that	improves	security	performance	and	resolves	the	problem	of	data	complexity	in	a	cloud	context.	An	
intrusion	detection	 system	based	 on	 the	BILSTM	approach	 is	 presented	by	 [19–20].	 The	 condensed	
findings	 obtained	 from	 the	 performance	 of	 the	misbehavior	 detection	 algorithms	 using	 the	 BILSTM	
method	recommend	that	the	algorithms	are	successful	in	identifying	harmful	events	within	the	target	
healthcare	system.	But	concerns	about	security	and	privacy	still	exist,	particularly	in	situations	where	
safety	 is	at	 risk.	Therefore,	a	DLT-trained	RNN-BILSTM	approach	 is	 implemented	 to	ensure	 the	data	
privacy	and	integrity	of	network	nodes.	The	main	goals	of	this	work	are	as	below,			

• To	offer	a	safe	and	tamper-resistant	platform	for	storing	and	accessing	sensitive	healthcare	data,	
thereby	safeguarding	patient	privacy	and	confidentiality,	the	blockchain	method	is	used.		

• To	find	the	shortest	path	for	efficient	data	transfers	within	the	blockchain	network,	a	Modified	
Gazelle	Optimized	Routing	approach	is	employed.	

• To	 assure	 the	 data	 privacy	 and	 integrity	 of	 network	 nodes,	 a	 DLT-trained	 RNN-BILSTM	
approach	is	implemented.			
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2.		 PROPOSED	METHODOLOGY		

The	healthcare	system	produces,	distributes,	stores,	and	uses	a	huge	amount	of	data	on	a	daily	
basis.		Using	blockchain	technology	to	improve	health	record	management	reduces	the	complexity	of	the	
present,	expensive	healthcare	system.		It	is	crucial	to	have	safe,	secure,	and	scalable	systems	for	sharing	
healthcare	data	 in	order	to	diagnose	patients	and	collaborate	on	treatment	decisions.	Therefore,	 this	
paper	 proposes	 a	 DLT-trained	 RNN-BILSTM	 approach.	 Fig.	 1	 represents	 the	 proposed	work’s	 block	
diagram.		

	
Figure	1.	Block	Diagram	of	Proposed	Work	

	
The	health	care	data	 is	collected	 from	an	 IoT	sensor,	which	acts	as	an	 input	 to	a	specialized	

routing	protocol	called	Modified	Gazelle	Optimized	Routing.	This	method	is	utilized	to	find	the	shortest	
path	for	efficient	data	transfer.	It	minimizes	latency	and	maximizes	throughput,	facilitating	continuous	
and	expedited	transfer	of	health	data	across	the	network.	However,	healthcare	networks	face	security	
risks	because	of	the	sensitive	nature	of	the	data	they	handle,	and	this	is	overcome	by	using	a	DLT-trained	
RNN-BILSTM-based	IDS.	Here,	the	IDS	enhances	healthcare	data	security	by	identifying	and	mitigating	
potential	 threats,	 ensuring	 the	 integrity	 and	 confidentiality	 of	 patient	 information.	 The	DLT-trained	
RNN-BILSTM-based	 IDS	 efficiently	 detects	 different	 types	 of	 attacks	 with	 high	 accuracy,	 including	
previously	unknown	threats,	thereby	ensuring	the	integrity	and	availability	of	healthcare	data.		

2.1.		 Modified	Gazelle	Optimized	Routing	Protocol	for	Finding	the	Shortest	Path		
The	shortest	path	for	effective	data	transfers	within	the	blockchain	network	is	found	by	using	

Modified	 Gazelle	 Optimization.	 This	 method	 reduces	 latency	 and	 increases	 throughput	 by	 using	 a	
specific	 routing	 protocol	 called	Modified	 Gazelle	 Optimized	 Routing,	 which	 enables	 continuous	 and	
quick	movement	of	health	data	throughout	the	network.		
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2.1.1.		 GOA	Algorithm	
The	GOA	algorithm’s	optimization	process	is	split	into	2	stages:	Rummaging,	which	is	known	as	

the	stage	of	exploitation,	and	eluding,	when	the	hunter	is	found,	which	is	named	as	the	exploration	stage.		
The	gazelle's	ability	to	avoid	predators	while	foraging	serves	as	the	inspiration	for	this	algorithm,	which	
updates	the	candidate's	solution.	

2.1.1.1.		Exploitation	Stage	
Gazelles	peacefully	foraging	in	the	absence	of	hunters,	and	this	procedure	is	predicated	on	the	

idea	that	each	gazelle's	location	follows	Brownian	motion.	The	process	for	updating	a	gazelle's	position	
is	as	follows:		

𝑥!
"# = 𝑥! + 𝜈. 𝑟$. 𝑅%(𝐸𝑙𝑖𝑡𝑒 − 𝑅% × 𝑥!)	 																																								(1)	

The	 locations	 of	 the	 𝑖&'	 gazelle	 earlier	 and	 later,	 the	 initial	 position	 update	 phase	 are	
represented	by𝑥!

"# 	and𝑥!;	the	gazelle's	foraging	speed	is	denoted	by𝜈;	𝑟$	is	a	random	number	that	occurs	
between	0	and	1;	Elite	denotes	the	optimal	gazelle's	position;	and	𝑅%is	a	Brownian	motion’s	position	
vector	that	will	be	attained	as								

𝑓%(𝑥, 𝜇, 𝜎) =
$

√)*+
exp 8− ,-./!0

)+!
9 = $

√)*
exp 8− -!

)
9	 																																		(2)	

In	the	above	equation,	𝑓%(𝑥, 𝜇, 𝜎)	denotes	the	Gaussian	probability	distribution	function	of	the	
Brownian	motion	position	vector	𝑅%;	the	value	of		µ		is	0and𝜎) = 1.		

2.1.1.2.		Exploration	Stage		
A	gazelle	 rapidly	 swung	 its	 tail	 and	beat	 its	hooves	 to	 flee,	 and	 the	hunter	will	pursue	after	

spotting.	The	direction	characteristic	variable	will	be	used	to	define	it	because	both	runs	exhibit	the	signs	
of	a	mutation.	The	gazelle	will	opt	to	flee	in	one	way	if	the	number	of	iterations	is	odd,	and	in	a	different	
direction	if	the	number	of	iterations	is	even.	The	position	updates	of	some	gazelles	saw	the	Levy	flight	
mode	 since	 they	were	 the	 ones	 that	 initially	 located	 the	 hunter	 and	 led	 the	 response.	 The	 delayed	
response	from	the	other	part	of	the	gazelle	develops	that	it	initially	follows	a	Brownian	motion	pattern	
before	 transitioning	 to	 a	 Levy	 flight	mode.	 At	 this	 stage,	 the	 gazelle's	 location	 update	 formula	 is	 as	
follows:				

𝑥!
").# = 𝑥! + 𝜈. 𝜇2. 𝑟). 𝑅$(𝐸𝑙𝑖𝑡𝑒 − 𝑅# × 𝑥!)																																																(3)	

𝑥!
").) = 𝑥! + 𝜈. 𝜇2.		𝑐3 . 𝑅%(𝐸𝑙𝑖𝑡𝑒 − 𝑅# × 𝑥!)	 																																											(4)			

Where	𝑥!,5
").$

)6 	denotes	the	location	at	the𝑗&'	the	dimension	of	the	𝑖&'	gazelle	next	to	the	2	stage	
of	location	update,	𝜇2	denotes	directional	characteristic	variable;	𝑟)is	a	random	number,	they	are	within	
the	range	of	0	and	1and𝑐3		signifies	the	cumulative	effect	of	the	hunter,	which	is	computed	as	follows:							

𝑐3 = 81 − 7
8
9
)7

86 	 																																			 (5)	

Here	𝑚	𝑎𝑛𝑑	𝑀	are	the	present	and	maximum	iteration	numbers.	If	the	gazelle	effectively	evades	
the	chase	of	the	hunter	will	be	denoted	as		

𝑥!
").9 = D

𝑥! + 𝑐3[𝑙% + 𝑟9. (𝑢% − 𝑙%)]. 𝑄	𝑖𝑓𝑟 , ≤ 𝑝𝑠𝑟𝑠
𝑥! + [𝑝𝑠𝑟𝑠(1 − 𝑟:) + 𝑟:](𝑥;$ − 𝑥;))		𝑒𝑙𝑠𝑒

	 																																							(6)	

𝑈 = D0, 𝑖𝑓	𝑟: < 0.34
1,			𝑒𝑙𝑠𝑒 	 																																																					(7)	

Here,	𝑢%	and	𝑙%	are	the	higher	and	lower	location	bounds	of	the	gazelle	individual,	respectively;	
𝑟9,:	are	two	random	numbers,, 𝑟9,: ∈ 	 [0, 1];	𝑝𝑠𝑟𝑠	denotes	the	𝐹(𝑥!

"))	denotes	the	rate	of	escape,	gotten	
as	0.34;	and	a	binary	vector	is	indicated	as	𝑄	contained	the	random	numbers	in	0	and	1.	However,	the	
GOA	often	exhibits	premature	convergence,	becoming	ensnared	in	local	optima.	This	limitation	impedes	
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thorough	exploration	of	the	solution	space,	thus	hindering	the	discovery	of	global	optima.	So,	this	paper	
uses	a	Modified	Gazelle	Optimization	Algorithm,	which	is	utilized	to	find	the	shortest	path.		

2.1.2.		 Modified	Gazelle	Optimization	Algorithm	
It	 is	 mainly	 used	 for	 routing	 purposes,	 such	 as	 finding	 the	 shortest	 path	 for	 efficient	 data	

transfers	within	the	blockchain	network.			

2.1.2.1.		 Logistic	Mapping	Initialization		
This	study	incorporates	logistic	mapping	into	an	initialization	procedure	of	the	GOA	algorithm	

to	symmetrically	improve	the	distribution	of	the	primary	solution	set	in	terms	of	both	uniformity	and	
unpredictability.		The	definition	of	the	logistic	map	is	as	follows:	

𝑥!<$ = 𝑥! × 𝜑 × (1 − 𝑥!)	 	 																																																		(8)	

Here,	𝜓	denotes	the	logistic	coefficient	that	is	within	the	range	0	and	4.	

2.1.2.2.		Gaussian	Mutation	Coefficient	and	Logarithmic	Inertia	Weight			

	
Figure	2.		Flowchart	of	Modified	Gazelle	Optimization	Algorithm.	
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Incorporating	the	Gaussian	mutation	coefficient	and	logarithmic	inertia	weight	into	the	location	
modernize	formula	of	the	gazelle	during	the	1st	and	2nd	phases	of	the	GOA	algorithm	will	augment	the	
algorithm's	global	search	capability	throughout	an	iterative	process.		

𝜔 = (𝑚 𝑀W ) × (𝑙𝑔𝑤#2="#$7>- − 𝑙𝑔𝑤7>-)	 																																															(9)	

𝜀 = 𝑟? × [1 − 8
7
8
9
)
	\	 	 																																				(10)	

𝑘 = ^2𝜎)log	( $
$.@
) × cos(2𝜋𝑟A)	 																																																			(11)	

Where	𝜔	 	represents	the	logarithmic	inertia	weight;	 	𝜔7>-and𝜔7!Bdenote	the	maximum	and	
minimum	values;	𝜀	is	a	random	variable	associated	with	the	present	iteration	number;	𝑘	signifies	the	
Gaussian	mutation	coefficient;	and	𝑟?,A	are	two	random	numbers	within	the	range	of		0	and	1	.	Figure	2	
displays	 the	 flowchart	of	 the	modified	gazelle	optimization	algorithm.	The	enhanced	 location	update	
formula	for	the	gazelle	individual	during	the	1st	and	2nd	steps	is	given	by:						

				𝑥!
"# = 𝑥! + 𝜈. 𝑟$. 𝑅%(𝜔 × 𝐸𝑙𝑖𝑡𝑒 − 𝑅% × 𝑥!)																																																(12)	

		𝑥!
").# = 𝑥! + 𝜈. 𝜇2. 𝑟). 𝑅$(𝑘 × 𝐸𝑙𝑖𝑡𝑒 − 𝑅# × 𝑥!)																																											(13)	

𝑥!
").) = 𝑥! + 𝜈. 𝜇2.		𝑐3 . 𝑅%(𝑘 × 𝐸𝑙𝑖𝑡𝑒 − 𝑅# × 𝑥!)																														 (14)	

2.1.2.3.		 Local	Optimal	Perturbation	Strategy		
An	optimal	individual’s	local	perturbation	process	in	its	neighborhood	is	defined	as		

𝐸𝑙𝑖𝑡𝑒C = D𝐸𝑙𝑖𝑡𝑒 + 𝑟?. 𝐸𝑙𝑖𝑡𝑒, 𝑟? < 0.5
𝐸𝑙𝑖𝑡𝑒, 𝑟? ≥ 0.5 	 																																					(15)	

Here	𝑟?	is	a	random	number	and	that	belongs	to	[0,	1];	𝐸𝑙𝑖𝑡𝑒		and𝐸𝑙𝑖𝑡𝑒C	denote	the	location	of	an	
optimal	individual	earlier	and	later	optimization.			

𝐸𝑙𝑖𝑡𝑒 ∗= D
𝐸𝑙𝑖𝑡𝑒C, 𝐹(𝐸𝑙𝑖𝑡𝑒C) < 𝐹(𝐸𝑙𝑖𝑡𝑒)
𝐸𝑙𝑖𝑡𝑒. 𝐹(𝐸𝑙𝑖𝑡𝑒C) ≥ 𝐹(𝐸𝑙𝑖𝑡𝑒) 	 																																					(16)	

Here	𝐸𝑙𝑖𝑡𝑒 ∗indicates	the	updated	 location	of	 the	optimal	 individual;	𝐹(𝐸𝑙𝑖𝑡𝑒)	and	𝐹(𝐸𝑙𝑖𝑡𝑒C)	 ,	
denote	 the	 values	 of	 the	 objective	 function	 earlier	 and	 later	 the	 updating.	 This	 approach	minimizes	
latency	and	maximizes	throughput,	facilitating	continuous	and	expedited	transfer	of	health	data	across	
the	 network.	 The	 following	methods	 are	 utilized	 to	 assure	 the	 data	 confidentiality	 and	 integrity	 of	
network	nodes.					

2.2.		 Distributed	Ledger	Technology	(DLT)	Trained	RNN-BILSTM-Based	Intrusion	Detection	
System	(IDS)			
To	 assure	 the	 data	 privacy	 and	 integrity	 of	 network	 nodes,	 a	 DLT-trained	 RNN-BILSTM	

approach	 is	 implemented.	 	Blockchain’s	DLT	 facilitates	 safe	 transmission	of	patient	medical	 records,	
reinforces	healthcare	data	defenses,	and	controls	the	supply	chain	of	medicine.			

2.2.1.		 Distributed	Ledger	Technology	
	DLT	 holds	 significant	 promise	 for	 rapid	 adoption	 within	 the	 healthcare	 sector	 as	 a	 digital	

service.	 Essentially,	 a	 distributed	 ledger	 functions	 as	 a	 decentralized	 database,	 managed	 through	 a	
consensus	protocol	executed	by	nodes	within	a	peer-to-peer	network.	Unlike	traditional	systems,	this	
protocol	 eliminates	 the	 need	 for	 a	 central	 administrator,	 as	 all	 network	 participants	 collaborate	 to	
uphold	 the	 database's	 integrity.	 This	 decentralization	 permits	 individuals	 by	 granting	 them	 greater	
control	over	their	data,	free	from	reliance	on	a	central	controller.			



	
JOIN	(Jurnal	Online	Informatika)	 	 p-ISSN:	2528-1682	

e-ISSN:	2527-9165	
	
	

	
	
Block	Chain-Enabled	Secure	Healthcare	Data	Management	with	Modified	Gazelle	Optimization	and	
DLT-Trained	RNN-BILSTM	Approach	
Rolly	Saxena1,	D.	Srinivasa	Rao2	

424	

	

	
Figure	3.	Distributed	ledger	system’s	layers.	

	
DLTs	are	structured	into	two	foundational	layers,	illustrated	in	Fig.	3.	A	first	layer,	known	as	the	

fabric	 layer,	encompasses	a	code	base	governing	communication,	 consensus	mechanisms,	public	key	
infrastructure,	and	database	organization.	A	second	layer	is	the	application	layer,	where	logic	resides,	
and	where	anyone	can	innovate	by	creating	decentralized	applications	that	operate	atop	the	fabric	layer.	
It's	 crucial	 to	 recognize	 that	 those	who	maintain	 and	 conserve	a	 fabric	 layer	wield	 control	 over	 the	
system's	 core	 functionalities,	 implying	 a	 degree	 of	 centralization	 in	 this	 technology.	 Nevertheless,	
decentralized	governance	models	exist	within	the	application	layer,	empowering	network	contributors	
to	influence	future	updates	to	the	fabric	layer.	While	distributed	ledgers	permit	any	peer	to	generate	
new	transactions	and	access	the	shared	database,	attempts	to	tamper	with	past	transactions	are	swiftly	
identified	by	authentic	peers.	This	resilience	against	malicious	alterations	after	transaction	acceptance	
by	all	network	participants	renders	it	challenging	for	adversaries	to	manipulate	historical	data	stored	
within	the	distributed	ledger.	Modern	cryptographic	primitives	like	distributed	consensus	procedures	
built	into	the	fabric	layer	and	one-way	hash	functions	are	responsible	for	the	creation	of	this	trustless	
environment.			Every	transaction	that	is	added	to	a	distributed	ledger	is	uniquely	and	readily	verifiably	
related	to	previous	transactions	using	cryptography.	Due	to	 the	 ledger's	ability	 to	spread	changes	to	
previously	recorded	transactions,	these	relationships	provide	chronology	and	peer	trust.	It	is	possible	
to	share	databases	in	a	peer-to-peer	network	without	requiring	mutual	trust	between	users,	thanks	to	
specialized	 distributed	 consensus	 methods.	 Cryptographic	 currency	 and	 smart	 contracts	 are	 two	
examples	 of	 innovative	 decentralized	 applications	 made	 possible	 by	 the	 trustless	 distribution	 of	
databases	among	several	peers.	The	trade-off	between	transaction	finality	and	latency	exists	in	current	
protocols,	despite	the	potential	of	this	developing	technology.	

A	transaction	on	the	Bitcoin	network	is	final.	It	is	customary	to	wait	6	blocks	to	be	included	in	
the	 lengthiest	 chain.	 This	 translates	 to	 a	wait	 time	 of	 roughly	 one	 hour.	 Applications	 that	 need	 low	
latency	and	value	exchange	are	dependent	on	the	payer	not	double-spending	and	guarantee	that	their	
transactions	will	be	completed	in	a	timely	manner.	The	existing	incentive	structures	that	facilitate	the	
viral	propagation	of	these	protocols	employ	computing	resources	inefficiently	and	limit	the	network's	
transaction	rate.	DLT	solves	health	care	systems'	interoperability	issues,	enabling	safe	and	effective	data	
interchange.	 Due	 to	 DLT's	 transparency	 and	 immutability,	 data	 security	 is	 guaranteed.	 Better	
performance	is	ensured	by	training	DLT	with	RNN-BILSTM,	which	detects	various	kinds	of	attacks.	To	
ensure	better	performance,	DLT	is	trained	with	RNN-BILSTM	that	finds	different	types	of	attacks.					

2.2.2.		 RNN-BILSTM-Based	IDS	
RNN-BILSTM	trained	by	DLT	is	utilized	to	safeguard	the	integrity	and	confidentiality	of	network	

nodes'	data.	Artificial	neural	networks	known	as	RNNs	allow	for	the	cycling	of	the	effects	of	one	node's	
output	on	the	following	input	of	other	nodes.	Its	behavior	exhibits	temporal	dynamics	as	a	result.	As	a	
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descendant	 of	 feed-forward	 neural	 networks,	 RNNs	 will	 interpret	 sequences	 of	 inputs	 of	 different	
lengths	 by	 remembering	 internal	 states.	 In	 RNNs,	 all	 input	 vector	 components	 share	 approximately	
equal	weights,	 unlike	 in	 feed-forward	NNs,	where	 each	 component	 has	 its	 own	weight.	 RNNs	 often	
outperform	conventional	methods	because	 they	 consolidate	 the	weights	of	positions	of	 the	multiple	
input	vectors	into	a	single	vector,	allowing	them	to	process	varying-length	sequences	using	the	same	
method	by	reusing	these	weights.	This	reduction	in	the	network-learning	parameters	(weights)	is	an	
extra	advantage.	Additionally,	the	outputs	passed	on	to	the	succeeding	stage	are	calculated	using	both	
the	numerous	data	points	and	the	input	vector	from	the	preceding	step,	typically	another	vector.	"Units"	
represent	the	formulas	employed	to	develop	the	middle	results.	Hence,	in	the	most	basic	form	of	an	RNN,	
the	following	relationship,	represented	by	Equations	17	and	18,	defines	a	block:					

𝑂D&E = 𝑓$(𝑊FF𝑂D&.$E +𝑊F-	𝑥D&E + 𝑏F)	 												 	 	 	(17)	

𝑦mD&E = 𝑓)(𝑊GF𝑂D&E + 𝑏G)	 						 	 	 											(18)	

Here,	𝑥D&E	 represents	an	 input	vector	sequence,	where	𝑡	 indicates	the	 iteration	at	which	the	
relations	 of	 the	 recurrent	 are	 calculated.	 The	 functions𝑓$	 and	 𝑓)denote	 activation	 functions.	
𝑊FF,𝑊F-	𝑊GF, 𝑏F	𝑎𝑛𝑑	𝑏G𝑎𝑟𝑒	Indicates	the	weight	matrices	and	biases.	LSTM	is	a	unit	of	RNNs	designed	to	
mitigate	 the	 vanishing	 gradients	 problem.	 Additionally,	 this	 architecture	 excels	 at	 preserving	 long	
variety	connections	by	understanding	the	relationships	between	values	at	the	sequence’s	beginning	and	
end.								

	

		 	
Figure	4.	The	RNN-BILSTM	model	architecture	

	

In	the	LSTM	model,	these	functionalities	manifest	as	gates,	comprising	3	different	ranges:	The	
forget	gate	controls	 the	 transfer	of	data	 from	1	memory	cell	 to	another,	 controlling	 the	retention	or	
dismissal	of	information.	The	update	gate,	also	known	as	the	memory	cell's	update	input,	determines	
whether	the	cell	will	be	updated.	It	also	governs	the	flow	of	data	from	a	potential	new	memory	cell	to	
the	present	one.	The	output	gate	dictates	the	value	of	the	next	hidden	state.	This	study	introduces	the	
integration	 of	 RNN	 and	 BILSTM	 for	 detecting	 different	 types	 of	 attacks.	 The	 network	 architecture	
includes	5	layers:	an	input	layer	sequence,	an	RNN	layer	with	100	hidden	units,	a	BILSTM	layer	with	200	
hidden	units,	a	Fully	Connected	(FC)	layer,	a	Softmax	layer,	and	an	output	classification	layer.	A	kind	of	
RNN	structure,	the	binary	LSTM	network,	has	demonstrated	reliability	and	effectiveness	in	simulating	
sequences	 with	 prolonged	 dependencies	 for	 various	 purposes,	 including	 time-dependent	 research	
scenarios.	After	the	RNN	module,	a	BILSTM	layer	was	incorporated	to	accommodate	the	time-sequenced	
nature	of	collected	signals,	where	the	current	state	heavily	relies	on	past	contexts.	Addressing	this	issue,	
the	BILSTM	model	proves	to	be	a	highly	effective	tool.	It	boasts	several	self-parameterized	regulating	
gates	within	its	memory	cell,	facilitating	state	information	manipulation,	as	illustrated	in	Figure	4.	The	
opening	of	these	gates	would	unleash	the	cell's	full	informational	potential.	To	summarize,	the	failure	of	
the	 previous	 cell's	 process	 stemmed	 from	 the	 neglect	 of	 the	 forget	 gate,	 potentially	 resulting	 in	 the	
neglect	of	preceding	data.	The	output	gate	autonomously	determines	whether	to	transmit	the	latest	cell	
output	 and	 the	 ultimate	 state.	 Additionally,	 to	 mitigate	 over-fitting,	 two	 dropout	 layers	 positioned	
beneath	the	ReLU	activation	function,	alongside	a	BILSTM	layer,	are	employed.	These	dropout	layers	
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effectively	 combat	 overfitting	while	 aiding	 in	minimizing	 generalization	 error,	 particularly	with	 the	
expansion	 of	NN	 layers.	 Given	 the	 vast	 amounts	 of	 health	 care	 data,	 effective	 intrusion	 detection	 is	
imperative	to	safeguard	sensitive	information	before	any	attacks	occur.	This	paper	proposes	an	RNN-
BILSTM-based	IDS	for	efficiently	detecting	various	attack	types.	While	RNN-based	intrusion	detection	
models	 automate	 local	 feature	 extraction,	 they	 fall	 short	 in	 capturing	 temporal	 correlations	 within	
intrusion	 data.	 In	 contrast,	 BILSTM-based	 intrusion	 detection	models	 excel	 in	 identifying	 persistent	
attack	 behaviors	 by	 extracting	 bidirectional	 temporal	 features	 from	 intrusion	 data.	 Therefore,	
combining	the	advantages	of	RNN	and	BILSTM,	this	paper	uses	an	intrusion	detection	model	based	on	
RNN-BILSTM,	which	effectively	finds	various	attacks	present	in	the	healthcare	management	system.		

	
3.	RESULTS	AND	DISCUSSION	

By	 adopting	 a	 Modified	 Gazelle	 Optimized	 Routing,	 a	 specialized	 routing	 protocol	 that	
minimizes	latency	and	maximizes	throughput,	it	facilitates	continuous	and	expedited	transfer	of	health	
data	across	the	network.	To	assure	the	data	confidentiality	and	integrity	of	network	nodes,	a	DLT-trained	
RNN-BILSTM	 approach	 is	 implemented.	 The	 proposed	 RNN-BILSTM-based	 IDS	 efficiently	 detects	
different	types	of	attacks	with	high	accuracy.						

	

	
Figure	5.	Security	level	comparison	

	

Figure	5	depicts	the	security	level	comparison	of	CNN	[23],	DNN	[24],	IBBMO-BILSTM	[25],	and	
RNN-BILSTM	methods.	The	proposed	work	has	the	highest	security	level	of	97%	which	is	better	than	
other	methods.					

	
Figure	6.	Delay	Performance	
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Figure	6	displays	 the	delay	performance	of	 the	Multi-Objective	Squirrel	Search	Optimization	
Algorithm	(MOSSA)	and	the	Modified	Gazelle	Optimization	algorithm.	The	proposed	algorithm	achieves	
the	lowest	delay	than	the	MOSSA	[26].		

	
Figure	7.	Computational	time	Performance	

Figure	7	 illustrates	 the	computational	 time	performance	of	MOSSA	and	 the	Modified	Gazelle	
Optimization	 algorithm.	 The	 proposed	 algorithm	 attains	 the	 lowest	 computational	 time	 than	 the	
MOSSOA	[26].			

	
Figure	8.	Performance	of	throughput.		

The	proposed	algorithm	attains	the	higher	throughput	than	the	MOSSA	[26].	Figure	8	illustrates	
the	throughput	performance	of	MOSSA	and	the	Modified	Gazelle	Optimization	algorithm.		

	
Figure	9.	Performance	of	efficiency.	
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Figure	 9	 represents	 the	 efficiency	 performance	 of	 MOSSA	 [26]	 and	 the	 Modified	 Gazelle	
Optimization	algorithm.	The	proposed	algorithm	attains	higher	efficiency	than	the	MOSSOA.		

	

	
Figure	10.	Accuracy	comparison.		

Figure	10	depicts	the	accuracy	comparison	with	different	methods	like	LR	[21],	LSTM	[22],	DNN	
[19],	 and	 RNN-BILSTM.	 The	 RNN-BILSTM	 attains	 an	 accuracy	 of	 97	 %	 which	 is	 better	 than	 other	
methods.					

	
Figure	11.	Comparison	of	precision.	

Figure	11	shows	the	comparison	of	precision	for	some	methods	such	as	DT	[19],	CNN-LSTM	[22]	
and	RNN-BILSTM.	The	proposed	RNN-BILSTM	outperformed	other	methods	with	a	precision	of	96.1%.				

	

	
Figure	12.	Comparison	of	Recall.		
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Figure	12	shows	the	recall	comparison	for	some	methods	like	NB	[19],	LSTM-RNN	[22]	and	the	
proposed	RNN-BILSTM	attains	the	recall	of	96.4%	that	is	better	than	other	methods.		

						

	
Figure	13.	Comparison	of	F-score	

	

Figure	13	displays	the	comparison	of	F-score	with	methods	like	DT	[19],	CNN-LSTM	[22],	and	
the	proposed	RNN-BILSTM	achieves	the	F-score	value	of	95.9%	which	is	better	than	other	methods.	

	
Table	1.	Analysis	of	the	detection	rate						

Appraoches	/Attacks		 Cnn-Bilstm	 Proposed		
DOS	 27%		 30	%	

Fuzzers		 85	%	 88	%	
Shell	code		 92	%	 93	%	

The	analysis	of	the	detection	rate	for	CNN-BILSTM	[27]	and	the	developed	approach	is	shown	
in	Table	1.	In	the	Denial	of	Service	(DoS)	attacks,	the	developed	approach	has	a	better	detection	rate	of	
30	%	than	CNN-BILSTM	(27%).	In	Fuzzers,	the	developed	model	attains	88%	accuracy,	surpassing	CNN-
BILSTM	(85%).	Also,	for	the	Shell	code,	the	developed	model	has	a	higher	rate	of	93%	than	CNN-BILSTM	
(92	%),	demonstrating	reliable	performance	over	attack	types.									

Table	2.	Analysis	of	Standard	Deviation		
Approaches		 Standard	Deviation		
GOA	[28]	 3.8054 × 10!"#	
Proposed	 3.512 × 10!"#	

	
The	analysis	with	GOA	and	the	developed	approach	in	terms	of	standard	deviation	is	shown	in	

Table	2.		The	better	Standard	deviation	of	3.512×10.?H	result	is	attained	by	the	developed	approach	than	
GOA.	 	The	incorporation	of	blockchain	and	deep	learning,	utilizing	modified	Gazelle	optimization	and	
DLT-trained	 RNN-BILSTM,	 is	 developed	 to	 minimize	 computational	 overhead	 on	 IoT	 by	 offloading	
complex	 tasks	 to	 distributed	 edge	 nodes	 and	 optimizing	 routing	 paths.	 	 The	 modified	 Gazelle	
optimization	assures	low	latency	and	energy-efficient	data	transfer.		The	training	of	RNN-BILSTM	on	the	
DLT	structure	enables	the	IoT	devices	to	perform	only	inference	operations.	It	allows	secure,	real-time	
data	 processing	 with	 minimal	 resource	 consumption,	 appropriate	 for	 resource-constrained	 IoT	
environments.			

				
4.		 CONCLUSION	

This	 paper	 proposes	 a	Modified	 Gazelle	 Optimization	 that	 enables	 the	 determination	 of	 the	
shortest	path	for	efficient	data	transfers	within	the	blockchain	network.	By	employing	a	decentralized	
and	 immutable	 ledger,	 blockchain	 provides	 a	 secure	 and	 tamper-resistant	 platform	 for	 storing	 and	
accessing	 sensitive	 data	 of	 healthcare,	 thereby	 safeguarding	 patient	 privacy	 and	 confidentiality.	 To	
safeguard	 the	data	 integrity	 and	privacy	 of	 network	nodes,	 a	DLT-trained	RNN-BILSTM	approach	 is	



	
JOIN	(Jurnal	Online	Informatika)	 	 p-ISSN:	2528-1682	

e-ISSN:	2527-9165	
	
	

	
	
Block	Chain-Enabled	Secure	Healthcare	Data	Management	with	Modified	Gazelle	Optimization	and	
DLT-Trained	RNN-BILSTM	Approach	
Rolly	Saxena1,	D.	Srinivasa	Rao2	

430	

	

implemented.	 This	 advanced	 DL	 technique	 enhances	 the	 security	 and	 reliability	 of	 the	 network	 by	
detecting	and	preventing	unauthorized	access	and	 tampering	attempts.	The	proposed	RNN-BILSTM-
based	IDS	efficiently	detects	different	types	of	attacks	including	previously	unknown	threats,	thereby	
warranting	 the	 integrity	 and	 availability	 of	 healthcare	 data.	 The	 comparative	 analysis	 is	 done	with	
conventional	methods	that	prove	the	proposed	method	is	much	better	than	other	methods.		With	a	97%	
accuracy	 rate,	 the	 research's	 findings	 confirm	 the	 effectiveness	 and	 consistency	 of	 the	 proposed	
approach	in	improving	the	security,	efficiency,	and	performance	matrix,	protecting	the	confidentiality	
and	integrity	of	medical	records.	
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