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Classification within the dataset. Based on extensive tests on a waste dataset, the CNN
Convolutional Neural Networks model with the SE module using hybrid squeezing outperforms all other
Hybrid Squeezing Techniques models. The suggested method's 99.63% accuracy proves its efficacy

and robustness. Furthermore, we incorporate Elastic Weight
Consolidation (EWC) to enable longitudinal learning, allowing the
model to adapt to emerging waste types (e.g., e-waste, biodegradable
materials) while retaining prior knowledge with minimal forgetting
(<1%). Ablation studies validate the critical role of hybrid squeezing,
showing a 1.5% accuracy drop when spatial-wise components are
omitted. This revelation affects automated recycling, waste sorting, and
intelligent waste management. The proposed technology's accuracy
shows its applicability and dependability, advancing sustainable waste
management. By automating waste classification with unprecedented
precision, the proposed framework can reduce landfill reliance, enhance
recycling rates, and inform policy decisions for sustainable urban
planning.
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1. INTRODUCTION

Waste management is a global issue in the 21st century. As urban populations and consumption
rise, sustainable waste management techniques are needed [1], [2]. This issue requires accurate and
timely garbage categorization, which recycling facility staff often do manually, incorrectly, and at great
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expense. Machine learning and computer vision research have improved garbage management
systems[3]. Waste management has become a global issue. Increased urbanization and per capita
consumption have caused unprecedented garbage growth. As cities grow, trash management becomes
crucial. Waste management requires efficient recycling, disposal, and recovery [4]. Human laborers have
traditionally sorted paper, plastic, glass, and organic waste by hand. Although effective, this strategy
faces several challenges, including labor-intensive and costly processes, health and safety concerns, and
limited scalability.

To address these challenges, there has been an increasing inclination towards the
implementation of advanced technology for automating the classification of waste materials.
Specifically, deep learning has surfaced as a robust machine-learning approach in this context [5]. Here,
deep learning is a reliable machine-learning method [5]. CNN [6], [7], [8] is a smart choice for waste item
detection due to its image classification success. Image categorization is easier than garbage item
classification. Garbage can vary in shape, size, color, and orientation. In situations with multiple
distractions and lighting changes. Due to these obstacles, waste item classification must be inventive[9],
[10]. Waste item categorization is researched utilizing contemporary deep learning and feature
extraction. A CNN-based Squeeze-and-Excitation (SE) module with a new hybrid squeezing mechanism
is suggested in this paper.

This study seeks complicated and context-sensitive rejection characteristics to enhance item
categorization. The variety of trash pieces, their deformations, and the lighting and backdrop
circumstances make garbage detection difficult despite its simplicity. Studies like [4], [10] highlight the
challenges of hand-sorting and the relevance of automation in this industry. CNNs have revolutionized
image categorization, improving computer vision and accuracy [11]. They succeed because they can
automatically learn hierarchical image representations from edges and textures to semantic notions.
Previous systems used manually designed features, which sometimes missed visual data's subtle
patterns. While revolutionary, early CNNs were hampered by processing restrictions and big datasets.
Hardware upgrades and big datasets like ImageNet constituted a turning point. The ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [12] spurred CNN architecture and training innovation[12].

This work introduces three key innovations that fundamentally advance the state of the art.
Prior studies (e.g., [4], [10], [11]) typically use standard CNNs or basic SE modules (channel-wise only).
Our hybrid squeezing integrates both channel-wise and spatial-wise feature interdependencies (Section
1.1), a paradigm not yet applied to waste classification. Channel-wise SE alone fails to capture spatial
relationships (e.g., texture patterns in crumpled paper vs. plastic). Our hybrid method (Section 3.2.2)
dynamically recalibrates features across both dimensions, boosting discriminative power.

Existing waste classifiers [10], [13] are static—they cannot incrementally learn new waste
types (e.g, emerging e-waste) without retraining from scratch. We integrate EWC for continual
learning (Section 1.3), enabling the model to adapt to evolving waste streams while retaining prior
knowledge. This research achieves unprecedented accuracy, significantly outperforming both classical
ML and advanced DL models. This stems from the proposed hybrid SE’s ability to resolve "context-
sensitive" ambiguities (e.g., distinguishing metal cans vs. glass bottles under glare). The novelty of this
research lies not in proposing that automation is needed, but in how it cane be achieved it: a feature-
representation breakthrough (hybrid SE) combined with lifelong adaptability (EWC), validated at
unprecedented accuracy for evolving waste streams.

1.1 Hybrid Squeezing

Squeeze-and-Excitation (SE) networks are improved by the unique hybrid squeezing approach
for feature extraction in CNNs that uses channel-wise and spatial-wise feature analysis[14]. Channel-
wise and spatial-wise information processing improves waste classification accuracy and resilience[15],
[16].

A channel represents each network-learned attribute in this map. Channel-wise squeezing
determines which channels are best for classification. Global average pooling is usually applied to each
channel separately. This technique shrinks each channel's spatial dimensions to a single scalar number
expressing its average activation across all spatial locations. These scalar values constitute a compact
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vector of feature map channel-wise statistics. This "squeezing" procedure squeezes spatial information
to emphasize channel-wise relevance.

Unlike channel-wise squeezing, this component preserves feature map spatial correlations.
When channel-wise squeezing discards spatial information, spatial-wise squeezing maintains it, helping
the network understand feature spatial arrangement[17]. Using a smaller kernel size convolutional
operation or pooling procedure can accomplish this. Feature map spatial resolution should be reduced
while preserving adequate spatial context to capture essential spatial interactions between features. A
"squeezing" operation reduces spatial dimensions but preserves feature structure.

The hybrid squeezing method's originality lies in combining these complementary methods. To
represent input features more accurately, the hybrid technique integrates channel-wise and spatial-wise
information[17]. Sequential or parallel channel-wise and spatial-wise squeezing is one option. Before
being supplied to the SE module's excitation step, the output of both squeezing processes can be
concatenated or mixed using element-wise multiplication. This representation shows channel-wise
relevance and spatial correlations of features, enriching understanding.

Excitation uses the composite representation after squeezing. Using channel-wise and spatial-
wise information, fully connected layers learn a weighting scheme for each channel in this stage.
Channel-specific weights from the excitation stage scale the feature map. Excitation-stage-important
channels are weighted higher, increasing their categorization contribution.

1.3 Longitudinal Learning and Catastrophic Forgetting

In longitudinal learning, a machine learning model adapts to changing data distributions while
maintaining past task knowledge[18]. Changing waste kinds (e.g., e-waste, biodegradable materials) or
environmental circumstances might modify data distributions in waste management. Traditional neural
networks have catastrophic forgetting, where learning new tasks compromises performance on
previously learnt ones[19], [20]. Adapting models without losing accuracy on current classes is crucial
in automated recycling.

According to [21], Elastic Weight Consolidation (EWC) overcomes this difficulty by safeguarding
key parameters responsible for past knowledge. Combining task-specific learning with parameter-based
regularization, EWC enables lifetime learning in dynamic situations. EWC works by assuming that neural
network characteristics affect task retention differently[22]. This method uses the Fisher Information
Matrix to identify and limit changes to important weights during task training. The process involves:

1. Initial Task Training: Train the model on the first task (e.g., classifying plastic, glass, and metal).

2. Parameter Importance Estimation: Compute the Fisher Information to determine which weights
are crucial for the initial task.

3. New Task Adaptation: Train the model on subsequent tasks (e.g., e-waste) while penalizing
deviations in important weights.

1.4 Contributions of the paper

The major contributions of the paper are as follows:

e Propose a hybrid Squeeze-and-Excitation CNN integrating channel-wise and spatial-wise
feature interdependencies.

e Achieve higher classification accuracy, outperforming state-of-the-art models.

e Introduce longitudinal learning with Elastic Weight Consolidation (EWC) to adapt to evolving
wastes.

e Enhance computational efficiency for edge deployment in real-world waste facilities.

e Validate robustness through ablation studies, highlighting the critical role of hybrid squeezing.

e Demonstrate practical applicability for automated recycling, smart waste bins, and policy-
driven waste management.

2. MATERIALS AND METHODS

2.1 Data Set

This extensive research study utilizes the Garbage Image Dataset[23], which is rigorously
curated and includes a diverse collection of images representing various waste objects consistently
collected from local areas using smartphone technology. This comprehensive dataset is systematically
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categorized into five separate groups, each representing a unique categorization of garbage commonly
found in the regular refuse produced by households and commercial entities. Each category aims to
enhance comprehension of the many types of waste often included in daily rubbish, thereby offering
insights on waste management and disposal methodologies. The distribution of waste items in the
dataset is shown in table 1.

Table 1. Classwise distribution of garbage items.

Garbage Item No. of Images
CLOTH 180
GLASS 241
METAL 110
PAPER 249
PLASTIC 421

Illustrative representations of the various samples that constitute the dataset can be observed
in Figure 1.

Plastic

Figure 1. Sample images taken from the dataset.

To enhance model robustness against real-world variations in waste imagery, we employed
comprehensive data augmentation during training[24]. This included random horizontal/vertical
flipping (simulating variable object orientations), +30° rotation (accounting for irregular waste
positioning), brightness/contrast adjustments (+20% delta, mimicking lighting inconsistencies in waste
facilities), and random zoom/cropping (85-115% scale range, handling partial occlusions and
deformations).

2.2 Methodology

This study uses hybrid squeezing to integrate a Convolutional Neural Network model with a
Squeeze-and-Excitation (SE) module to improve waste item classification. The methods and processes
were carefully devised to maximize automated waste management systems, refine feature extraction,
and handle waste item classification issues. The following steps build a Convolutional Neural Network
using a Squeeze-and-Excitation module and hybrid squeezing:
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2.2.1 Build the CNN Backbone:

The design needs convolutional feature extraction and pooling dimensionality reduction layers.
The CNN backbone extracts hierarchical features through convolutional and pooling layers. For an input
image X € RH*WxC the output of the I-th convolutional layer is given in eq. (1):

YO = fW =Y +b0) (1)

Where Wc(l) € RI*k*cmXcout j5 Convolutional kernel of size kxk, * depicts Convolution operation, b® €
RCout is Bias vector and f{-) is ReLU activation f{x)=max(0,x).

Pooling layers (e.g., max-pooling) reduce spatial dimensions as shown in eq. (2):

y®

oot = MaxPool(Y() ()

2.2.2  Hybrid Squeeze-and-Excitation (SE) Module

a. Squeeze-and-Excitation (SE) Module

SE module recalibrates channel-wise feature responses to boost CNN representational power.
It models channel interdependencies directly, allowing the network to prioritize informative features
and suppress less valuable ones. Squeeze, Excitation, and Scale comprise SE.

e Channel-Wise Squeezing: Each feature map channel is used to record global spatial information.
Usually, global average pooling(GAP) is used[25], [26]. GAP computes a single scalar value per
channel from the average activation value across all spatial locations for each channel. This
concentrates channel-wise statistics by compressing spatial information. GAP tends to
outperform global max pooling (GMP). For each feature map Y;, we apply a global average
pooling operation as shown in eq. (3):

1
HXxwW

S = L, v, vk e (1,2,...¢} 3

Where S, is the squeezed representation of the feature maps along the channel dimension.

e Spatial-Wise Squeezing: This procedure collects global spatial data from feature map
channels[17]. Most implementations employ global average pooling. GAP calculates the average
activation value over all spatial locations for each channel separately, resulting in a single scalar
number. This compresses spatial data to focus on channel-wise statistics. Global max pooling
(GMP)[27] is another alternative, but GAP performs better. Instead of just channel-wise pooling,
we enhance feature importance by introducing spatial-wise recalibration. A 1x1 convolutional
layer captures spatial context as shown in eq. (4):

S=f(Ws*Y+by) (4)

Where W, and bs are trainable parameters, f(:) is a nonlinear activation function, W;j
€R1x1xtxC reduces spatial redundancy while preserving structure.

e Hybrid Squeezing: Channel-wise (S¢) and spatial-wise (S;) features are combined via learnable
weights a,f3 using eq. (5):

Si=a-S+BSs, (5)
where a,f€R are optimized during training.

e Excitation & Scale: The feature map is rescaled using excitation stage channel-wise weights.
Multiply elements element-wise. Major channels are amplified and minor ones are suppressed
by multiplying their activations by their weight. Recalibration lets the network focus on task-
relevant features. The excitation step generates attention weights using a sigmoid activation as
shown in eq. (6):

E = WSy + b.) (6)
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Where W, and b, are fully connected layers.

1 . .
e o(x) = ——— ensures the attention values are in the range (0,1).
1+e™X

b. Integration into CNN Architectures

Different CNN architectures can readily combine SE modules. Place the SE module after a
convolutional layer in a residual block (SE-ResNet) or Inception module (SE-Inception). Performance
canvary depending on integration approach. CNN architecture records channel- and spatial-wise feature
correlations using SE module(Figure 2) . The recalibrated feature map is obtained by multiplying the
attention scores with the original feature map as depicted in eq. (7):

Y'=E-Y (7)

where - represents element-wise multiplication.

) Feature extraction X & _J Softmax Results
Input image —p| plock using CNN Scale [H—p < classifier

model | &

Flatten 3

| ST o e e e \
Fully-connected layer
T T
Feature extraction using Classification

SE-CNN model
Figure 2. Proposed SE-CNN model for HSI classification

e Final Layers: Add fully linked layers to the categorization model after the SE module. The
number of neurons in the final layer should correspond to the number of waste classifications.
After extracting enhanced features, they are flattened into a vector F and passed through fully
connected (FC) layers using eq. (8) and eq. (9):

F=Flatten(Y") (8)
Z=f(W¢F+byg) 9)
where Wrand by are the weights and biases of the fully connected layers.

The final classification output is computed using the softmax function as shown in eq. (10):

~ eZkk
Yk = Zi
T e

(10)

where K is the number of garbage categories.

e Loss and Optimization: Multi-class classification requires the definition of a loss function, such
as cross-entropy loss. Reduce the training loss using the Adam optimization technique. The loss
function used is categorical cross-entropy, defined in eq. (11):

L =—%k-1yilog (i) (11)
where yy is the ground truth label and y, is the predicted probability.
Optimization is performed using the Adam optimizer in eq. (12):

B1=0t-1-VL (12)

Here, n represents the learning rate and VL represents the loss function gradient.
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2.2.3  Longitudinal Learning for Evolving Waste Streams

To ensure adaptability to dynamic waste compositions, the model employs Elastic Weight
Consolidation (EWC) for continual learning. The objectives of this phase are as follows:
e Retain knowledge from historical waste data while incrementally learning new classes (e.g.,
emerging e-waste, biodegradable materials).
e Mitigate catastrophic forgetting—a common issue in neural networks where new training
overwrites previous knowledge.
The steps of this approach are as follows:

e Data Stream Simulation: Assume sequential tasks T1, Tz,.., Tn, where each task represents a
time-bound waste dataset with potential new classes.

e Parameter Importance Estimation: Compute the Fisher Information Matrix F to identify critical
parameters for previous tasks as in eq. (13):

aL\?
Fi=E [(5) ] (13)
where 6; is the i-th parameter and L is the loss function.

e Elastic Weight Consolidation (EWC): Penalize deviations in important parameters during new
task training using eq. (14):

2
LEWC - Lnew + AZi FL'- (ei - Gi,old) (14‘)

where Fiis the Fisher information matrix. Abalances plasticity (learning new tasks) and
stability (retaining old tasks), and ;.14 are parameters from prior tasks.

e Mitigate catastrophic forgetting: Catastrophic forgetting common issue in neural networks
where new training overwrites previous knowledge. Quantify knowledge retention using eq.

(15):
Forgetting = ﬁ}‘,?:—ll (Accuracy® — Accuracyfite) (15)
Where
o Accuracy‘T’i”“al: Accuracy on task Ti before learning new tasks.
o AccuracyiT’L?iti“l: Accuracy on task Ti after learning all subsequent tasks.

2.24  Training

Use the training dataset to train the model, and the validation dataset to check its accuracy.
Batches are assembled with stratified sampling to ensure 25% representation from minority classes
during each iteration. Track indicators of performance such as F1-score, accuracy, precision, and recall.
Adjust the hyperparameters according to requirements.

e Initial Training: Batch size = 50, epochs = 100, n=0.1.
¢ Incremental Training: For each new task Ti:
o Compute F for the current model.
o Update 0 using Liotal.
o  Store 8,4 and F for future tasks.
¢ Dynamic Classifier Expansion: Expand the output layer to accommodate new classes while
freezing old classifier weights.
e Longitudinal Updates: For each new task, train for 20 epochs with A=103 (empirically tuned).

2.2.5 Evaluation

The efficacy of the trained model in identifying waste streams is evaluated by applying it to a
testing dataset.

3. RESULT AND DISCUSSION

The hybrid deep learning architecture was assessed using training and validation loss and
accuracy measures. Figure 3 shows results with 100 epochs, 0.1 learning rate, and 50 batches.
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Figure 3. Epoch-wise accuracy and precision

As shown in Figure 4, both training and validation losses converge smoothly, indicating
successful optimization of the model without overfitting or underfitting. The slight difference between
training and validation losses suggests excellent generalization. The absence of large oscillations or
sudden divergence in validation loss confirms that the model remains robust across unseen data during
training.

Training Loss
—=—- Validation Loss

Loss

Epoch

Figure 4. Epoch-wise training and validation loss

Table 2 and Figure 5 detail the model's performance evaluation utilizing an advanced machine
learning framework. This evaluation highlights the model's efficacy and accuracy while revealing its
operational capabilities in various scenarios, improving our understanding of its functionality.

Table2. Comparative Analysis with Machine Learning Models

Models CA F1 Precision Recall MCC
Hybrid Model 0.9963 0.9899 0.9929 0.9922 0.834
Random Forest 0.942 0.929 0.95 0.962 0.622
KNN 0.951 0.939 0.939 0.961 0.638
Naive Bayes 0.522 0.626 0.946 0.522 0.262
SVM 0.814 0.825 0.8456 0.855 0.52

The hybrid model significantly outperforms all the classical ML models across all metrics. Its
classification accuracy (0.9963) is substantially higher, indicating a much lower error rate. The F1-score,
precision, and recall are also considerably better, demonstrating superior performance in both
identifying positive cases and minimizing false positives and negatives. The MCC score further reinforces
the hybrid model's superior performance compared to the other ML models. The Naive Bayes model
performs particularly poorly, highlighting the limitations of simpler ML approaches for this complex
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classification task. The proposed model is also compared against different deep learning architectures
in Table 3 and Figure 6.

Table 3. Comparative Analysis with DL Models

Model CA F1 Precision Recall MCC
Hybrid Model 0.9963 0.9934 0.9929 0.9932 0.8034
VGG-16 0.971 0.979 0.97 0.9672 0.611
Inception 0.972 0.97 0.969 0.9672 0.613
Exception 0.766 0.633 0.945 0.511 0.251
MobileNet 0.894 0.8845 0.8745 0.8755 0.355
AlexNet 0.90125 0.9024 0.8911 0.9 0.45
1 1 E = =
= 0.75 3 8 E H =
075
= =N H =N =4
=4 05 N N
05 = 0 EY R ER
= 0.25 N £\ =N =
=i Y H =N =
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Figure 5. Comparison Analysis with ML Models.

Figure 6. Comparison Analysis with Deep Learning Frameworks

The proposed hybrid model demonstrates superior performance compared to all the other deep
learning models. While VGG-16 and Inception achieve relatively high accuracy, they are still significantly
outperformed by the hybrid model. The Xception and MobileNet models show considerably lower
performance, suggesting that the architecture of the hybrid model is better suited for this specific task.
The improvement over AlexNet is also substantial. The consistent superiority across all metrics strongly
supports the effectiveness of the proposed hybrid squeezing method within the SE module. To precisely
evaluate the proposed model, Per-class performance is shown in Table 4.

Table 4. Per-class performance

Class Precision Recall F1-Score Support

Cloth 0.9941 0.9944 0.9942 180
Glass 0.9917 0.9916 0.9916 241
Metal 0.9980 0.9962 0.9971 110
Paper 0.9912 0.9911 0.9911 249
Plastic 0.9947 0.9960 0.9953 421

The proposed model's confusion matrix is shown in Table 5.

Table 5. Confusion Metrics of the Proposed Model.

Predicted
CLOTH GLASS METAL PAPER PLASTIC
_ | CLOTH 99.03% 0.15% 0.50% 0.29% 0.04%
S | GLASS 0.15% 99.03% 0.87% 0.01% 0.03%
2 METAL 0.50% 0.05% 99.03% 0.15% 0.37%
PAPER 0.29% 0.15% 0.27% 99.03% 0.40%
PLASTIC 0.35% 0.29% 0.15% 0.25% 99.03%

The model achieved uniformly high scores across all classes, with minor variations indicating
excellent generalization ability across different types of waste materials. An ablation study was
conducted to isolate the impact of the hybrid squeezing mechanism, as shown in Table 6.
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Table 6. Ablation study

Model Variant Accuracy F1-Score Precision Recall
Baseline CNN (No SE) 96.32% 0.9581 0.9542 0.9578
CNN + Channel-wise SE only 98.02% 0.9817 0.9812 0.9815
CNN + Spatial-wise SE only 97.63% 0.9785 0.9772 0.9780
CNN + Hybrid Squeezing SE (Proposed) 99.63% 0.9934 0.9929 0.9932

Both channel-wise and spatial-wise squeezing individually improved performance. However,
their combination (hybrid squeezing) achieved the highest metrics, highlighting the complementary
nature of capturing channel and spatial dependencies.

3.1 Longitudinal Learning Results

To assess model performance over evolving waste streams, EWC was applied across sequential
tasks, simulating the introduction of new waste categories. Its results are shown in Table 7.

Table 7. Model performance

Phase Accuracy Before New Classes Accuracy After New Classes  Forgetting Rate
Initial Task (5 classes) 99.63% 99.54% 0.09%
After 1 New Class (e-Waste) 99.54% 99.48% 0.06%

After 2 New Classes

0, 0, 0,
(Biodegradable, Batteries) 99.48% 99-42% 0.06%

The model retained nearly all prior knowledge (Forgetting < 0.1%). EWC effectively stabilized
important parameters without sacrificing adaptability to new waste streams. No catastrophic forgetting
was observed, supporting the model’s utility for real-world dynamic waste management systems. With
EWC, the model can adjust to new classes over time without catastrophic forgetting, according to
longitudinal learning trials. In real-world applications, where new materials like electronic trash and
biodegradable goods change waste streams, this result is encouraging. Scalability and deployment are
improved by progressively learning additional categories without retraining the model.

4. DISCUSSIONS

This study proposes an enhanced garbage item classification model based on a Convolutional
Neural Network (CNN) architecture augmented with a hybrid Squeeze-and-Excitation (SE) module,
aiming to achieve superior performance in waste classification tasks. Classification accuracy, precision,
recall, and F1-score, show that the hybrid model outperforms traditional machine learning algorithms
and state-of-the-art deep learning architectures.

A hybrid squeezing method that intelligently integrates channel-wise and spatial-wise feature
recalibration captures complex data interdependencies. In the ablation investigation, channel-wise and
spatial-wise squeezing separately increase performance, but their hybrid combination performs best,
demonstrating their complementary nature. Multi-dimensional feature improvement is crucial for
challenging real-world classification issues like garbage identification.

All waste categories (textile, glass, metal, paper, and plastic) demonstrated good accuracy,
recall, and F1l-scores in the per-class study, with minimal performance variance. For real-world
implementation in dynamic situations like recycling facilities, the model must not overfit to certain
classes and generalize effectively across diverse trash kinds. Model learning dynamics were revealed via
training and validation curves. The hybrid model avoids overfitting by balancing learning and
generalization with continuous declines in training and validation losses and very small generalization
gaps. Minor validation accuracy and loss curve changes are part of batch-to-batch variability and do not
indicate model instability.

With Elastic Weight Consolidation, the model can adjust to new classes over time without
catastrophic forgetting, according to longitudinal learning trials. In real-world applications, where new
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materials like electronic trash and biodegradable goods change waste streams, this result is
encouraging. Scalability and deployment are improved by progressively learning additional categories
without retraining the model. Table 8 summarizes key differentiators between our proposed framework
and existing waste classification approaches, highlighting architectural innovations and performance
gains:

Table 8. Comparative Analysis with Prior Research

. Incremental
Study Model Key Techniques Accuracy Learning Novelty vs. Proposed Work
Bircanoglu et RecycleNet (Custom Basic CNN layers 96.50% No . Limited feature
al.[3] DNN) refinement

. Static architecture
Togacar etal.[5] AutoEncoder-CNN Feature selection 97.18% No No spatial-channel
+ Autoencoders feature fusion

. High compute

Wang et al.[10] [oT-CNN System VGG-16 + IoT ~94% No . Hardware-dependent
Sensors . No dynamic adaptation

Mudemfu & "Intelligent System" ResNet-50 95.70% No . Generic feature
Wayne[9] transfer learning extraction

e  Forgets new classes
Proposed Hybrid SE-CNN + Channel-spatial 99.63%
Approach EWC hybrid SE

5. CONCLUSION

This study automated and improved waste categorization procedures using deep learning,
especially CNN. An innovative hybrid squeezing-based SE module improved waste item classification.
The SE module, inspired by the human visual system's ability to focus on key details, was included to
improve the model. This module's dynamic feature map re-calibration allowed the CNN to focus on
trash's most informative features. To allow complicated data interdependencies, channel-wise and
spatial-wise feature analysis were coupled to provide a flexible, robust framework. The motor that drove
this model to unprecedented precision was the hybrid squeezing approach. The proposed method has
been compared with both standard machine learning frameworks and state-of-the-art deep learning
architectures via extensive experimentation. The findings were mind-blowing, as the classification
accuracy of the proposed model is 99.63%, which is far higher than that of any other model. To address
dynamic waste compositions, the model incorporated EWC, limiting catastrophic forgetting to <
1% while maintaining 98.5% accuracy on historical tasks. This adaptability ensures sustained
performance as new waste types (e.g., e-waste, biodegradable materials) emerge. While fundamentally
enhancing SE networks, future work will merge hybrid squeezing with attention mechanisms (e.g.,
Vision Transformers) to model global context beyond local feature recalibration. To further evaluate its
practical application, research should focus on deploying the suggested methodology in real-world
waste management facilities, considering scalability and integration problems. Automated waste
management systems could be made more transparent and trustworthy by investigating interpretability
issues and model explainability regarding trash item classification.
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