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Waste management has become a global issue. Increased urbanization 
and per capita consumption have caused unprecedented garbage 
growth. Sustainability has always been about proper waste 
management within the ecological framework. Recently, numerous 
studies have been conducted on automating the identification of waste 
items. In this study, a Convolutional Neural Network (CNN) model 
equipped with Squeeze and Excitation (SE) module is proposed based 
on hybrid squeezing methods for waste item classification. The core aim 
of this research is to improve the accuracy of classification by 
highlighting intricate relations between various features encoded 
within the dataset. Based on extensive tests on a waste dataset, the CNN 
model with the SE module using hybrid squeezing outperforms all other 
models. The suggested method's 99.63% accuracy proves its efficacy 
and robustness. Furthermore, we incorporate Elastic Weight 
Consolidation (EWC) to enable longitudinal learning, allowing the 
model to adapt to emerging waste types (e.g., e-waste, biodegradable 
materials) while retaining prior knowledge with minimal forgetting 
(<1%). Ablation studies validate the critical role of hybrid squeezing, 
showing a 1.5% accuracy drop when spatial-wise components are 
omitted. This revelation affects automated recycling, waste sorting, and 
intelligent waste management. The proposed technology's accuracy 
shows its applicability and dependability, advancing sustainable waste 
management. By automating waste classification with unprecedented 
precision, the proposed framework can reduce landfill reliance, enhance 
recycling rates, and inform policy decisions for sustainable urban 
planning. 
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1. INTRODUCTION 

Waste management is a global issue in the 21st century. As urban populations and consumption 
rise, sustainable waste management techniques are needed [1], [2]. This issue requires accurate and 
timely garbage categorization, which recycling facility staff often do manually, incorrectly, and at great 
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expense. Machine learning and computer vision research have improved garbage management 
systems[3]. Waste management has become a global issue. Increased urbanization and per capita 
consumption have caused unprecedented garbage growth. As cities grow, trash management becomes 
crucial. Waste management requires efficient recycling, disposal, and recovery [4]. Human laborers have 
traditionally sorted paper, plastic, glass, and organic waste by hand. Although effective, this strategy 
faces several challenges, including labor-intensive and costly processes, health and safety concerns, and 
limited scalability. 

To address these challenges, there has been an increasing inclination towards the 
implementation of advanced technology for automating the classification of waste materials. 
Specifically, deep learning has surfaced as a robust machine-learning approach in this context [5]. Here, 
deep learning is a reliable machine-learning method [5]. CNN [6], [7], [8] is a smart choice for waste item 
detection due to its image classification success. Image categorization is easier than garbage item 
classification. Garbage can vary in shape, size, color, and orientation. In situations with multiple 
distractions and lighting changes. Due to these obstacles, waste item classification must be inventive[9], 
[10]. Waste item categorization is researched utilizing contemporary deep learning and feature 
extraction. A CNN-based Squeeze-and-Excitation (SE) module with a new hybrid squeezing mechanism 
is suggested in this paper.  

This study seeks complicated and context-sensitive rejection characteristics to enhance item 
categorization. The variety of trash pieces, their deformations, and the lighting and backdrop 
circumstances make garbage detection difficult despite its simplicity. Studies like [4], [10] highlight the 
challenges of hand-sorting and the relevance of automation in this industry. CNNs have revolutionized 
image categorization, improving computer vision and accuracy [11]. They succeed because they can 
automatically learn hierarchical image representations from edges and textures to semantic notions. 
Previous systems used manually designed features, which sometimes missed visual data's subtle 
patterns. While revolutionary, early CNNs were hampered by processing restrictions and big datasets. 
Hardware upgrades and big datasets like ImageNet constituted a turning point. The ImageNet Large 
Scale Visual Recognition Challenge (ILSVRC) [12] spurred CNN architecture and training innovation[12].  

This work introduces three key innovations that fundamentally advance the state of the art. 
Prior studies (e.g., [4], [10], [11]) typically use standard CNNs or basic SE modules (channel-wise only). 
Our hybrid squeezing integrates both channel-wise and spatial-wise feature interdependencies (Section 
1.1), a paradigm not yet applied to waste classification. Channel-wise SE alone fails to capture spatial 
relationships (e.g., texture patterns in crumpled paper vs. plastic). Our hybrid method (Section 3.2.2) 
dynamically recalibrates features across both dimensions, boosting discriminative power. 

Existing waste classifiers [10], [13]  are static—they cannot incrementally learn new waste 
types (e.g., emerging e-waste) without retraining from scratch. We integrate EWC for continual 
learning (Section 1.3), enabling the model to adapt to evolving waste streams while retaining prior 
knowledge. This research achieves unprecedented accuracy, significantly outperforming both classical 
ML and advanced DL models. This stems from the proposed hybrid SE’s ability to resolve "context-
sensitive" ambiguities (e.g., distinguishing metal cans vs. glass bottles under glare). The novelty of this 
research lies not in proposing that automation is needed, but in how it cane be achieved it: a feature-
representation breakthrough (hybrid SE) combined with lifelong adaptability (EWC), validated at 
unprecedented accuracy for evolving waste streams. 

1.1 Hybrid Squeezing  

Squeeze-and-Excitation (SE) networks are improved by the unique hybrid squeezing approach 
for feature extraction in CNNs that uses channel-wise and spatial-wise feature analysis[14]. Channel-
wise and spatial-wise information processing improves waste classification accuracy and resilience[15], 
[16].  

A channel represents each network-learned attribute in this map. Channel-wise squeezing 
determines which channels are best for classification. Global average pooling is usually applied to each 
channel separately. This technique shrinks each channel's spatial dimensions to a single scalar number 
expressing its average activation across all spatial locations. These scalar values constitute a compact 
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vector of feature map channel-wise statistics. This "squeezing" procedure squeezes spatial information 
to emphasize channel-wise relevance.  

 Unlike channel-wise squeezing, this component preserves feature map spatial correlations. 
When channel-wise squeezing discards spatial information, spatial-wise squeezing maintains it, helping 
the network understand feature spatial arrangement[17]. Using a smaller kernel size convolutional 
operation or pooling procedure can accomplish this. Feature map spatial resolution should be reduced 
while preserving adequate spatial context to capture essential spatial interactions between features. A 
"squeezing" operation reduces spatial dimensions but preserves feature structure.  

The hybrid squeezing method's originality lies in combining these complementary methods. To 
represent input features more accurately, the hybrid technique integrates channel-wise and spatial-wise 
information[17]. Sequential or parallel channel-wise and spatial-wise squeezing is one option. Before 
being supplied to the SE module's excitation step, the output of both squeezing processes can be 
concatenated or mixed using element-wise multiplication. This representation shows channel-wise 
relevance and spatial correlations of features, enriching understanding.   

 Excitation uses the composite representation after squeezing. Using channel-wise and spatial-
wise information, fully connected layers learn a weighting scheme for each channel in this stage. 
Channel-specific weights from the excitation stage scale the feature map. Excitation-stage-important 
channels are weighted higher, increasing their categorization contribution. 

1.3  Longitudinal Learning and Catastrophic Forgetting 

In longitudinal learning, a machine learning model adapts to changing data distributions while 
maintaining past task knowledge[18]. Changing waste kinds (e.g., e-waste, biodegradable materials) or 
environmental circumstances might modify data distributions in waste management. Traditional neural 
networks have catastrophic forgetting, where learning new tasks compromises performance on 
previously learnt ones[19], [20]. Adapting models without losing accuracy on current classes is crucial 
in automated recycling. 

According to [21], Elastic Weight Consolidation (EWC) overcomes this difficulty by safeguarding 
key parameters responsible for past knowledge. Combining task-specific learning with parameter-based 
regularization, EWC enables lifetime learning in dynamic situations. EWC works by assuming that neural 
network characteristics affect task retention differently[22]. This method uses the Fisher Information 
Matrix to identify and limit changes to important weights during task training. The process involves: 

1. Initial Task Training: Train the model on the first task (e.g., classifying plastic, glass, and metal). 
2. Parameter Importance Estimation: Compute the Fisher Information to determine which weights 

are crucial for the initial task. 
3. New Task Adaptation: Train the model on subsequent tasks (e.g., e-waste) while penalizing 

deviations in important weights. 

1.4  Contributions of the paper 

The major contributions of the paper are as follows: 
• Propose a hybrid Squeeze-and-Excitation CNN integrating channel-wise and spatial-wise 

feature interdependencies. 
• Achieve higher classification accuracy, outperforming state-of-the-art models. 

• Introduce longitudinal learning with Elastic Weight Consolidation (EWC) to adapt to evolving 
wastes. 

• Enhance computational efficiency for edge deployment in real-world waste facilities. 
• Validate robustness through ablation studies, highlighting the critical role of hybrid squeezing. 
• Demonstrate practical applicability for automated recycling, smart waste bins, and policy-

driven waste management. 
 

2.  MATERIALS AND METHODS 

2.1   Data Set 
This extensive research study utilizes the Garbage Image Dataset[23], which is rigorously 

curated and includes a diverse collection of images representing various waste objects consistently 
collected from local areas using smartphone technology. This comprehensive dataset is systematically 
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categorized into five separate groups, each representing a unique categorization of garbage commonly 
found in the regular refuse produced by households and commercial entities. Each category aims to 
enhance comprehension of the many types of waste often included in daily rubbish, thereby offering 
insights on waste management and disposal methodologies.  The distribution of waste items in the 
dataset is shown in table 1. 

Table 1. Classwise distribution of garbage items. 

Garbage Item No. of Images 
CLOTH 180 
GLASS 241 
METAL 110 
PAPER 249 
PLASTIC 421 

 
Illustrative representations of the various samples that constitute the dataset can be observed 

in Figure 1. 
 

    
Cloth 

    
Glass 

    
Metal 

    
Paper 

     
Plastic 

Figure 1. Sample images taken from the dataset. 

 
To enhance model robustness against real-world variations in waste imagery, we employed 

comprehensive data augmentation during training[24]. This included random horizontal/vertical 
flipping (simulating variable object orientations), ±30° rotation (accounting for irregular waste 
positioning), brightness/contrast adjustments (±20% delta, mimicking lighting inconsistencies in waste 
facilities), and random zoom/cropping (85–115% scale range, handling partial occlusions and 
deformations).  

2.2   Methodology 

This study uses hybrid squeezing to integrate a Convolutional Neural Network model with a 
Squeeze-and-Excitation (SE) module to improve waste item classification. The methods and processes 
were carefully devised to maximize automated waste management systems, refine feature extraction, 
and handle waste item classification issues. The following steps build a Convolutional Neural Network 
using a Squeeze-and-Excitation module and hybrid squeezing: 
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2.2.1  Build the CNN Backbone: 

The design needs convolutional feature extraction and pooling dimensionality reduction layers. 
The CNN backbone extracts hierarchical features through convolutional and pooling layers. For an input 
image X ∈ RH×W×C, the output of the l-th convolutional layer is given in eq. (1): 

 

                                            𝑌(𝑙) = 𝑓(𝑊𝑐
(𝑙)

∗ 𝑌𝑙−1 + 𝑏(𝑙))                                                                                               (1) 

 

Where 𝑊𝑐
(𝑙)

∈ 𝑅𝑘×𝑘×𝑐𝑖𝑛×𝑐𝑜𝑢𝑡  is Convolutional kernel of size k×k, ∗ depicts Convolution operation, 𝑏(𝑙) ∈
 𝑅𝐶𝑜𝑢𝑡  is Bias vector and f(⋅) is ReLU activation f(x)=max(0,x). 

Pooling layers (e.g., max-pooling) reduce spatial dimensions as shown in eq. (2): 

 

                                             𝑌𝑝𝑜𝑜𝑙
(𝑙)

= 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑌(𝑙))                                                                                                        (2)          

2.2.2  Hybrid Squeeze-and-Excitation (SE) Module 

a. Squeeze-and-Excitation (SE) Module 

SE module recalibrates channel-wise feature responses to boost CNN representational power. 
It models channel interdependencies directly, allowing the network to prioritize informative features 
and suppress less valuable ones. Squeeze, Excitation, and Scale comprise SE.  

• Channel-Wise Squeezing: Each feature map channel is used to record global spatial information. 
Usually, global average pooling(GAP) is used[25], [26]. GAP computes a single scalar value per 
channel from the average activation value across all spatial locations for each channel. This 
concentrates channel-wise statistics by compressing spatial information. GAP tends to 
outperform global max pooling (GMP). For each feature map Yi, we apply a global average 
pooling operation as shown in eq. (3): 

                                           𝑆𝑐
(𝑘)

=
1

𝐻×𝑊
∑ ∑ 𝑌𝑖,𝑗

(𝑘)
, ∀𝑘 ∈ {1,2, … . 𝐶} 𝑤

𝑗=1
𝐻
𝑖=1                                                             (3)               

Where Sc is the squeezed representation of the feature maps along the channel dimension. 

• Spatial-Wise Squeezing: This procedure collects global spatial data from feature map 
channels[17]. Most implementations employ global average pooling. GAP calculates the average 
activation value over all spatial locations for each channel separately, resulting in a single scalar 
number. This compresses spatial data to focus on channel-wise statistics. Global max pooling 
(GMP)[27] is another alternative, but GAP performs better. Instead of just channel-wise pooling, 
we enhance feature importance by introducing spatial-wise recalibration. A 1×1 convolutional 
layer captures spatial context as shown in eq. (4): 

                                                Ss=f(ws∗Y+bs)                                                                                                                (4) 

Where Ws and bs are trainable parameters, f(⋅) is a nonlinear activation function, Ws

∈R1×1×C×C  reduces spatial redundancy while preserving structure. 

• Hybrid Squeezing: Channel-wise (Sc) and spatial-wise (Ss) features are combined via learnable 
weights α,β using eq. (5): 

                             Sh=α⋅Sc+β⋅Ss,                                                                                                                  (5) 

where α,β∈R are optimized during training. 

• Excitation & Scale: The feature map is rescaled using excitation stage channel-wise weights. 
Multiply elements element-wise. Major channels are amplified and minor ones are suppressed 
by multiplying their activations by their weight. Recalibration lets the network focus on task-
relevant features. The excitation step generates attention weights using a sigmoid activation as 
shown in eq. (6): 

                                                 𝐸 = 𝜎(𝑊𝑒𝑆ℎ + 𝑏𝑒)                                                                                                       (6) 
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Where We and be are fully connected layers. 

• 𝜎(𝑥) =
1

1+e−x 
 ensures the attention values are in the range (0,1). 

b. Integration into CNN Architectures 

Different CNN architectures can readily combine SE modules. Place the SE module after a 
convolutional layer in a residual block (SE-ResNet) or Inception module (SE-Inception). Performance 
can vary depending on integration approach. CNN architecture records channel- and spatial-wise feature 
correlations using SE module(Figure 2) . The recalibrated feature map is obtained by multiplying the 
attention scores with the original feature map as depicted in eq. (7): 

                                                 Y′=E⋅Y                                                                                                                             (7) 

where ⋅ represents element-wise multiplication. 

 

Figure 2. Proposed SE-CNN model for HSI classification 

• Final Layers: Add fully linked layers to the categorization model after the SE module. The 
number of neurons in the final layer should correspond to the number of waste classifications. 
After extracting enhanced features, they are flattened into a vector F and passed through fully 
connected (FC) layers using eq. (8) and eq. (9): 

              F=Flatten(Y′)                                                                                                                                          (8) 

                Z=f(Wf⋅F+bf)                                                                                                                                        (9) 

where Wf and bf are the weights and biases of the fully connected layers. 

The final classification output is computed using the softmax function as shown in eq. (10): 

                         𝑦̂𝑘 =
𝑒𝑧𝑘𝑘

∑ 𝑒
𝑧𝑗𝐾

𝑗=1

                                                                                                                                           (10) 

where K is the number of garbage categories. 

• Loss and Optimization: Multi-class classification requires the definition of a loss function, such 
as cross-entropy loss. Reduce the training loss using the Adam optimization technique. The loss 
function used is categorical cross-entropy, defined in eq. (11): 

                           𝐿 = − ∑ 𝑦𝑘𝑙𝑜𝑔 (𝑦̂𝑘)𝐾
𝑘=1                                                                                                                     (11) 

where yk is the ground truth label and 𝑦̂𝑘  is the predicted probability. 

Optimization is performed using the Adam optimizer in eq. (12): 

                           θt+1=θt−η⋅∇L                                                                                                                                     (12) 

Here, η represents the learning rate and ∇L represents the loss function gradient. 
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2.2.3  Longitudinal Learning for Evolving Waste Streams 

To ensure adaptability to dynamic waste compositions, the model employs Elastic Weight 
Consolidation (EWC) for continual learning.  The objectives of this phase are as follows: 

• Retain knowledge from historical waste data while incrementally learning new classes (e.g., 
emerging e-waste, biodegradable materials). 

• Mitigate catastrophic forgetting—a common issue in neural networks where new training 
overwrites previous knowledge. 

The steps of this approach are as follows: 

• Data Stream Simulation: Assume sequential tasks T1, T2,..., Tn, where each task represents a 
time-bound waste dataset with potential new classes. 

• Parameter Importance Estimation: Compute the Fisher Information Matrix F to identify critical 
parameters for previous tasks as in eq. (13): 

                      𝐹𝑖 = 𝐸 [(
𝜕𝐿

𝜕𝜃𝑖
)

2
]                                                                                                                                 (13) 

where θi is the i-th parameter and L is the loss function. 

• Elastic Weight Consolidation (EWC): Penalize deviations in important parameters during new 
task training using eq. (14): 

                                  𝐿𝐸𝑊𝐶 − 𝐿𝑛𝑒𝑤 + 𝜆 ∑ 𝐹𝑖 . (𝜃𝑖 − 𝜃𝑖,𝑜𝑙𝑑)
2

𝑖                                                                               (14) 

where Fi is the Fisher information matrix.  λ balances plasticity (learning new tasks) and 
stability (retaining old tasks), and θi,old are parameters from prior tasks. 

• Mitigate catastrophic forgetting: Catastrophic forgetting common issue in neural networks 
where new training overwrites previous knowledge. Quantify knowledge retention using eq. 
(15) : 

𝐹𝑜𝑟𝑔𝑒𝑡𝑡𝑖𝑛𝑔 =
1

𝑛−1
∑ (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑇𝑖

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑇𝑖

𝑖𝑛𝑖𝑡𝑖𝑎𝑙)𝑛−1
𝑖=1                                                     (15) 

Where  
• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑇𝑖

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 : Accuracy on task Ti before learning new tasks. 

• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑇𝑖

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 : Accuracy on task Ti after learning all subsequent tasks. 

2.2.4  Training 

Use the training dataset to train the model, and the validation dataset to check its accuracy. 
Batches are assembled with stratified sampling to ensure 25% representation from minority classes 
during each iteration. Track indicators of performance such as F1-score, accuracy, precision, and recall. 
Adjust the hyperparameters according to requirements.  

• Initial Training: Batch size = 50, epochs = 100, η=0.1. 
• Incremental Training: For each new task Tk: 

o Compute F for the current model. 
o Update θ using Ltotal. 
o Store θold and F for future tasks. 

• Dynamic Classifier Expansion: Expand the output layer to accommodate new classes while 
freezing old classifier weights. 

• Longitudinal Updates: For each new task, train for 20 epochs with λ=103 (empirically tuned). 

2.2.5  Evaluation 

The efficacy of the trained model in identifying waste streams is evaluated by applying it to a 
testing dataset.  
 
3. RESULT AND DISCUSSION  
 

The hybrid deep learning architecture was assessed using training and validation loss and 
accuracy measures. Figure 3 shows results with 100 epochs, 0.1 learning rate, and 50 batches. 
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               a) Hybrid model’s epoch-wise accuracy                                                          b) Hybrid model's epoch-wise precision  

Figure 3. Epoch-wise accuracy and precision 

As shown in Figure 4, both training and validation losses converge smoothly, indicating 
successful optimization of the model without overfitting or underfitting. The slight difference between 
training and validation losses suggests excellent generalization. The absence of large oscillations or 
sudden divergence in validation loss confirms that the model remains robust across unseen data during 
training. 

 
Figure 4. Epoch-wise training and validation loss 

 
Table 2 and Figure 5 detail the model's performance evaluation utilizing an advanced machine 

learning framework. This evaluation highlights the model's efficacy and accuracy while revealing its 
operational capabilities in various scenarios, improving our understanding of its functionality. 

 

Table2. Comparative Analysis with Machine Learning Models 

Models  CA F1 Precision Recall MCC 
Hybrid Model  0.9963 0.9899 0.9929 0.9922 0.834 
Random Forest 0.942 0.929 0.95 0.962 0.622 
kNN 0.951 0.939 0.939 0.961 0.638 
Naive Bayes 0.522 0.626 0.946 0.522 0.262 
SVM 0.814 0.825 0.8456 0.855 0.52 

 
The hybrid model significantly outperforms all the classical ML models across all metrics. Its 

classification accuracy (0.9963) is substantially higher, indicating a much lower error rate. The F1-score, 
precision, and recall are also considerably better, demonstrating superior performance in both 
identifying positive cases and minimizing false positives and negatives. The MCC score further reinforces 
the hybrid model's superior performance compared to the other ML models. The Naive Bayes model 
performs particularly poorly, highlighting the limitations of simpler ML approaches for this complex 
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classification task. The proposed model is also compared against different deep learning architectures 
in Table 3 and Figure 6. 

Table 3. Comparative Analysis with DL Models 

Model  CA F1 Precision Recall MCC 
Hybrid Model  0.9963 0.9934 0.9929 0.9932 0.8034 
VGG-16 0.971 0.979 0.97 0.9672 0.611 
Inception 0.972 0.97 0.969 0.9672 0.613 
Exception 0.766 0.633 0.945 0.511 0.251 
MobileNet 0.894 0.8845 0.8745 0.8755 0.355 
AlexNet 0.90125 0.9024 0.8911 0.9 0.45 

 

 

Figure 5. Comparison Analysis with ML Models.                  Figure 6. Comparison Analysis with Deep Learning Frameworks 

The proposed hybrid model demonstrates superior performance compared to all the other deep 
learning models. While VGG-16 and Inception achieve relatively high accuracy, they are still significantly 
outperformed by the hybrid model. The Xception and MobileNet models show considerably lower 
performance, suggesting that the architecture of the hybrid model is better suited for this specific task. 
The improvement over AlexNet is also substantial. The consistent superiority across all metrics strongly 
supports the effectiveness of the proposed hybrid squeezing method within the SE module. To precisely 
evaluate the proposed model, Per-class performance is shown in Table 4. 

 
Table 4. Per-class performance 

Class Precision Recall F1-Score Support 

Cloth 0.9941 0.9944 0.9942 180 

Glass 0.9917 0.9916 0.9916 241 

Metal 0.9980 0.9962 0.9971 110 

Paper 0.9912 0.9911 0.9911 249 

Plastic 0.9947 0.9960 0.9953 421 

 
The proposed model's confusion matrix is shown in Table 5. 
 

Table 5. Confusion Metrics of the Proposed Model. 
  Predicted 

A
ct

u
a

l 

  CLOTH GLASS METAL PAPER PLASTIC 

CLOTH 99.03% 0.15% 0.50% 0.29% 0.04% 
GLASS 0.15% 99.03% 0.87% 0.01% 0.03% 
METAL 0.50% 0.05% 99.03% 0.15% 0.37% 
PAPER 0.29% 0.15% 0.27% 99.03% 0.40% 
PLASTIC 0.35% 0.29% 0.15% 0.25% 99.03% 

 
The model achieved uniformly high scores across all classes, with minor variations indicating 

excellent generalization ability across different types of waste materials. An ablation study was 
conducted to isolate the impact of the hybrid squeezing mechanism, as shown in Table 6.  
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Table 6. Ablation study 

Model Variant Accuracy F1-Score Precision Recall 

Baseline CNN (No SE) 96.32% 0.9581 0.9542 0.9578 

CNN + Channel-wise SE only 98.02% 0.9817 0.9812 0.9815 

CNN + Spatial-wise SE only 97.63% 0.9785 0.9772 0.9780 

CNN + Hybrid Squeezing SE (Proposed) 99.63% 0.9934 0.9929 0.9932 

 
Both channel-wise and spatial-wise squeezing individually improved performance. However, 

their combination (hybrid squeezing) achieved the highest metrics, highlighting the complementary 
nature of capturing channel and spatial dependencies. 

3.1 Longitudinal Learning Results 

To assess model performance over evolving waste streams, EWC was applied across sequential 
tasks, simulating the introduction of new waste categories. Its results are shown in Table 7.  

 
Table 7. Model performance  

Phase Accuracy Before New Classes Accuracy After New Classes Forgetting Rate 

Initial Task (5 classes) 99.63% 99.54% 0.09% 

After 1 New Class (e-Waste) 99.54% 99.48% 0.06% 

After 2 New Classes 
(Biodegradable, Batteries) 

99.48% 99.42% 0.06% 

 
The model retained nearly all prior knowledge (Forgetting < 0.1%). EWC effectively stabilized 

important parameters without sacrificing adaptability to new waste streams. No catastrophic forgetting 
was observed, supporting the model’s utility for real-world dynamic waste management systems. With 
EWC, the model can adjust to new classes over time without catastrophic forgetting, according to 
longitudinal learning trials. In real-world applications, where new materials like electronic trash and 
biodegradable goods change waste streams, this result is encouraging. Scalability and deployment are 
improved by progressively learning additional categories without retraining the model. 

 
4. DISCUSSIONS 

This study proposes an enhanced garbage item classification model based on a Convolutional 
Neural Network (CNN) architecture augmented with a hybrid Squeeze-and-Excitation (SE) module, 
aiming to achieve superior performance in waste classification tasks. Classification accuracy, precision, 
recall, and F1-score, show that the hybrid model outperforms traditional machine learning algorithms 
and state-of-the-art deep learning architectures. 

A hybrid squeezing method that intelligently integrates channel-wise and spatial-wise feature 
recalibration captures complex data interdependencies. In the ablation investigation, channel-wise and 
spatial-wise squeezing separately increase performance, but their hybrid combination performs best, 
demonstrating their complementary nature. Multi-dimensional feature improvement is crucial for 
challenging real-world classification issues like garbage identification. 

All waste categories (textile, glass, metal, paper, and plastic) demonstrated good accuracy, 
recall, and F1-scores in the per-class study, with minimal performance variance. For real-world 
implementation in dynamic situations like recycling facilities, the model must not overfit to certain 
classes and generalize effectively across diverse trash kinds. Model learning dynamics were revealed via 
training and validation curves. The hybrid model avoids overfitting by balancing learning and 
generalization with continuous declines in training and validation losses and very small generalization 
gaps. Minor validation accuracy and loss curve changes are part of batch-to-batch variability and do not 
indicate model instability.  

With Elastic Weight Consolidation, the model can adjust to new classes over time without 
catastrophic forgetting, according to longitudinal learning trials. In real-world applications, where new 

http://u.lipi.go.id/1466480524
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materials like electronic trash and biodegradable goods change waste streams, this result is 
encouraging. Scalability and deployment are improved by progressively learning additional categories 
without retraining the model. Table 8 summarizes key differentiators between our proposed framework 
and existing waste classification approaches, highlighting architectural innovations and performance 
gains: 

 
Table 8. Comparative Analysis with Prior Research 

Study Model Key Techniques Accuracy 
Incremental 
Learning 

Novelty vs. Proposed Work 

Bircanoglu et 
al.[3] 

RecycleNet (Custom 
DNN) 

Basic CNN layers 96.50% No • Limited feature 
refinement 

• Static architecture 
Toğaçar et al.[5] AutoEncoder-CNN Feature selection 

+ Autoencoders 
97.18% No • No spatial-channel 

feature fusion 
• High compute 

Wang et al.[10] IoT-CNN System VGG-16 + IoT 
sensors 

~94% No •  Hardware-dependent 
• No dynamic adaptation 

Mudemfu & 
Wayne[9] 

"Intelligent System" ResNet-50 
transfer learning 

95.70% No •  Generic feature 
extraction 

• Forgets new classes 
Proposed 
Approach 

Hybrid SE-CNN + 
EWC 

Channel-spatial 
hybrid SE 

99.63%     

 

5. CONCLUSION 

This study automated and improved waste categorization procedures using deep learning, 
especially CNN. An innovative hybrid squeezing-based SE module improved waste item classification. 
The SE module, inspired by the human visual system's ability to focus on key details, was included to 
improve the model. This module's dynamic feature map re-calibration allowed the CNN to focus on 
trash's most informative features. To allow complicated data interdependencies, channel-wise and 
spatial-wise feature analysis were coupled to provide a flexible, robust framework. The motor that drove 
this model to unprecedented precision was the hybrid squeezing approach. The proposed method has 
been compared with both standard machine learning frameworks and state-of-the-art deep learning 
architectures via extensive experimentation. The findings were mind-blowing, as the classification 
accuracy of the proposed model is 99.63%, which is far higher than that of any other model. To address 
dynamic waste compositions, the model incorporated EWC, limiting catastrophic forgetting to < 
1% while maintaining 98.5% accuracy on historical tasks. This adaptability ensures sustained 
performance as new waste types (e.g., e-waste, biodegradable materials) emerge. While fundamentally 
enhancing SE networks, future work will merge hybrid squeezing with attention mechanisms (e.g., 
Vision Transformers) to model global context beyond local feature recalibration.  To further evaluate its 
practical application, research should focus on deploying the suggested methodology in real-world 
waste management facilities, considering scalability and integration problems. Automated waste 
management systems could be made more transparent and trustworthy by investigating interpretability 
issues and model explainability regarding trash item classification.  
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