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The increasing volume of domestic wastewater, particularly greywater, 
has raised the demand for intelligent and adaptive treatment systems to 
support efficient water reuse. This study aims to develop a classification 
model for filtration media types (physical, chemical, and biological) 
based on water quality data using the Random Forest algorithm. Initial 
labeling was conducted using the K-Means Clustering method on a 
publicly available dataset simulated as greywater, based on ten key 
water quality parameters relevant to irrigation and environmental 
standards. Model evaluation demonstrated excellent classification 
performance, with a macro F1-score reaching 0.97 and consistent 
results in both 5-fold and 10-fold cross-validation. These findings 
indicate that the proposed model can be integrated into an IoT-based 
biofiltration system as an automated classification logic to support 
adaptive, efficient, and reusable household wastewater treatment in the 
context of irrigation. 
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1. INTRODUCTION  

On Urbanization and increased domestic water consumption have put significant pressure on 
surface water quality, especially in developing countries [1]. One type of domestic wastewater that is 
often overlooked but has the potential for reuse is greywater, which is non-fecal wastewater derived 
from bathing, washing, and kitchen activities [2], [3], With proper treatment, greywater can be reused 
for purposes such as irrigation, in line with the principles of sustainable water management [4]. 

To be safe for reuse, greywater must go through a filtration process that is capable of handling 
physical, chemical, and biological contaminants. Intelligent biofiltration systems are emerging as a 
potential solution through the integration of real-time water quality data from environmental sensors 
[5], [6], [7]. However, a major challenge in these systems is determining the type of filtration media that 
best suits the characteristics of the incoming graywater. 

Various machine learning (ML) approaches have been used for water quality classification, such 
as Support Vector Machine (SVM), Decision Tree, and Random Forest [8], [9], [10], [11], [12]. Generally, 
the focus of previous research has been on general water quality classification or quality index 
prediction [13], without considering the need for specific classification of filtration media types, which 
is crucial in the context of data-driven processing. 

This study proposes the development of a filtration media type classification model (physical, 
chemical, biological) using the Random Forest algorithm based on ten key water quality parameters. The 
dataset used comes from an aquaculture water quality study simulated as graywater, given the similarity 
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of key parameters such as BOD, DO, ammonia, and turbidity [14]. The selection of parameters refers to 
the regulation of water quality standards for irrigation and environment such as Regulation of the 
Minister of Health of the Republic of Indonesia No. 2 Year 2023, Permenkes No. 32 Year 2017, Minister 
of Environment and Forestry Regulation No. P.68/MENLHK/2016, as well as guidelines from the World 
Health Organization (WHO) [15], [16], [17], [18] 

Initial labeling was performed using K-Means Clustering to form three filtration categories, 
which were then used as labels in the Random Forest model [19]. Unlike most previous studies which 
focused on binary water classification or potability prediction, this study introduces a novel approach 
by classifying greywater into filtration media categories (physical, biological, and chemical) using 
machine learning. The labels were generated through K-Means clustering and used to train a Random 
Forest model, offering a data-driven logic for adaptive media selection. This approach provides a 
foundational step toward intelligent greywater treatment systems that can dynamically respond to real-
time water quality conditions The resulting model is an early prototype of automated classification logic 
that can be integrated into IoT-based intelligent filtration systems, especially for the treatment of 
household wastewater to be utilized as irrigation water. 

 
2. METHOD  

2.1 Dataset and Parameter Characteristics 

This research utilizes a public dataset titled Aquaculture - Water Quality Dataset available in the 
Mendeley Data repository [14]. This dataset was originally developed to evaluate pond water quality in 
aquaculture systems based on numerical parameters relevant to fish growth. Although not derived from 
direct field measurements, this dataset is systematically organized and can be used for training machine 
learning-based classification models. 

This dataset was used as the initial simulation data for training the AI model, assuming that the 
parameters would later be provided by water quality sensors in the real system implementation. 

The dataset consists of 4,300 data samples with 14 water quality parameters, namely 
temperature, turbidity, dissolved oxygen (DO), biological oxygen demand (BOD), carbon dioxide (CO₂), 
pH, alkalinity, hardness, calcium, ammonia, nitrite, phosphorus, hydrogen sulfide (H₂S), and plankton. 
All data are organized in numerical format with consistent units of measurement. 

Although the original context was aquaculture, a number of parameters in this dataset such as 
BOD, DO, ammonia, pH, and turbidity are also used in domestic graywater quality assessment. Therefore, 
this dataset is relevant to use as simulative data to build a filtration media type classification model 
based on graywater quality [13].  

 
2.2 Preprocessing and Feature Selection 

From a total of 14 parameters available in the dataset, 10 parameters were selected for use in 
training and testing the classification model. The feature selection process was based on three main 
considerations, namely: (1) consistent data availability across entries, (2) ecological and technical 
relevance to domestic graywater quality, and (3) regulatory support from applicable environmental 
quality standards. 

The parameters selected include temperature, pH, dissolved oxygen (DO), biological oxygen 
demand (BOD), ammonia, nitrite, phosphorus, hardness, alkalinity, and turbidity. This selection is based 
on the provisions listed in the Regulation of the Minister of Health of the Republic of Indonesia No. 2 
Year 2023, Permenkes No. 32 Year 2017, Minister of Environment and Forestry Regulation No. 
P.68/MENLHK/2016, as well as guidelines from the World Health Organization (WHO)[15], [16], [17], 
[18]. 

Some parameters such as hardness and alkalinity were considered because they have a high 
correlation with total dissolved solids (TDS), which directly affects the effectiveness of the filtration 
media. Previous studies have shown that TDS is strongly correlated with alkalinity and hardness (r &gt; 
0.8), as well as conductivity (r = 0.9), suggesting a structural link between water quality parameters. 
Even in the Ratuwa river analysis, the largest contributions to TDS values came from alkalinity (23.5%) 
and hardness (19.9%), outweighing other ions [20], [21], [22], [23]. In contrast, parameters such as 
carbon dioxide, H₂S, plankton, calcium, and nitrite are to some extent not used because they are not the 
main focus in the filtration process of small-scale domestic graywater, nor are they prioritized in the 
domestic wastewater quality standard regulations. 
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Although a correlation heatmap was also provided (Figure 1) to identify redundancy among 
features, it was not the main basis for feature selection. Instead, domain knowledge and regulatory 
standards were prioritized to ensure relevance to greywater filtration contexts. As the correlation values 
were mostly below 0.5, all selected features were retained to preserve informative diversity. 

 

Table 1. Selected Parameters and Quality Standard Sources 

Criteria units Source of Quality Standard Explanation 
Temperature °C Permenkes No. 2/2023, 

P.68/MENLHK/2016 
Indicator of ambient temperature and biological 
processes 

pH - Permenkes No. 2/2023, 
P.68/MENLHK/2016 

Basic parameter of water chemistry balance 

Dissolved Oxygen (DO) mg/L P.68/MENLHK/2016 Indicates oxygen availability for biological processes 
Biochemical Oxygen 
Demand (BOD) 

mg/L P.68/MENLHK/2016 Measures the load of biodegradable organic 
pollutants 

Ammonia (NH₃) mg/L Permenkes No. 2/2023, 
P.68/MENLHK/2016 

Indicates the level of toxic nitrogen contamination 

Phosphorus (PO₄³⁻) mg/L Permenkes No. 2/2023 Key nutrient causing eutrophication 
Nitrite Mg/L Permenkes No. 32/2017 Indicator of toxic inorganic nitrogen contaminants 
Hardness mg/L WHO Closely related to TDS and scale formation potential 
Alkalinity mg/L WHO Indicator of acid neutralizing capacity and projected 

TDS 
Turbidity (CM) CM P.68/MENLHK/2016, WHO Water turbidity based on visual visibility (in 

centimeters) 

 

 
Figure 1. Heatmap of Correlation beetwen Water Quality Parameters 

 
To identify possible redundancies between numerical features and support the input parameter 

selection process, a correlation analysis between water quality parameters was conducted using 
Pearson coefficient. The results of the correlation visualization are presented in Figure 1. In general, 
correlations between parameters were low to moderate (r &lt; 0.5), indicating that each feature 
contributed relatively unique information to the classification system. The highest correlations were 
recorded between BOD and Nitrite (r = 0.47) and Ammonia and BOD (r = 0.34), while a negative 
correlation was found between Turbidity and DO (r = -0.35). No extreme multicollinearity correlations 
were found between parameters, so all features were considered suitable for inclusion in the 
classification model training. 
 
2.3 Data Labeling with K-Means Clustering 

Since the dataset did not have explicit classification labels, the labeling process was performed 
using the K-Means Clustering algorithm which has high computational efficiency, fast convergence, and 
is widely used in clustering environmental data  [24]. 
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The number of clusters was set to three (k = 3) to represent the three main categories of 
filtration media: physical, chemical, and biological. This division refers to the greywater treatment 
literature that differentiates water quality parameters based on physical (such as turbidity and 
temperature), chemical (such as pH and BOD), and biological (such as organic residue and coliform) 
characteristics [3].  

Labeling was done based on ten selected parameters, and the clustering results were analyzed 
through the average value of each parameter in each group. Clusters with high ammonia and BOD levels 
were associated with biological filtration, while clusters with high ionic levels were associated with 
chemical filtration, and clusters with high turbidity and low chemical parameters were considered 
physical filtration.  

The use of K-Means in water quality classification has also been proven effective in various 
studies, both for groundwater, rivers, and industrial effluents [25], [26], [27], [28], [29].  

 

Table 2. Average Value of Water Quality Parameters in Each K-Means Result Cluster. 

Parameters Cluster 0 (Physical) Cluster 1 (Biological) Cluster 2 (Chemical) 

Temp (°C) 26.229046 25.375313 26.119791 
DO (mg/L) 6.161586 4.798653 5.931697 
BOD (mg/L) 4.227467 2.451902 4.039728 
pH 7.667912 7.719905 7.749116 
Alkalinity (mg/L) 114.389701 56.667415 194.772847 
Hardness (mg/L) 249.174967 100.093532 64.834258 
Ammonia (mg/L) 0.075587 0.029032 0.079713 
Nitrite (mg/L) 1.082027 0.364187 1.043787 
Phosphorus (mg/L) 1.243793 1.104928 1.315640 
Turbidity (cm) 28.358927 44.969636 32.252305 

 
Based on the average values of water quality parameters shown in Table 3, each cluster was 

classified according to the appropriate filtration type. Cluster 0 was labeled as physical filtration due to 
its highest hardness and lowest turbidity, indicating a dominance of suspended solid particles. Cluster 1 
exhibited the lowest dissolved oxygen (DO) and highest turbidity, suggesting biological contamination 
that may require microbial treatment, despite relatively low BOD and ammonia levels. Meanwhile, 
Cluster 2 was categorized as chemical filtration, as it showed elevated levels of alkalinity, nitrite, and 
phosphorus, along with the lowest hardness, indicating a prevalence of dissolved chemical pollutants. 

The interpretation of cluster labels into physical, biological, and chemical categories was based 
on a synthesis of water quality indicator functions. Cluster 0, characterized by high hardness and low 
turbidity, reflects the dominance of suspended solids, aligning with typical physical filtration targets 
[25]. Cluster 1 showed high turbidity and low DO common indicators of organic or microbial 
contamination therefore classified under biological filtration. Meanwhile, Cluster 2 had elevated 
concentrations of nitrite, phosphorus, and alkalinity, which are indicative of dissolved chemical 
pollutants requiring chemical treatment. This interpretive framework is consistent with classifications 
found in environmental water treatment literature [3], [26]. 
 

 

Figure 2a. Distribution Diagram of Number of Data per 
Cluster 

 

 
Figure 2b.Scatter Plot (PCA 2D) 

These labels were subsequently used as target classes in the Random Forest classification 
model. Prior to training, the class distribution resulting from K-Means clustering was examined to 
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identify potential imbalances. As shown in Figure 2a, the dataset is imbalanced, with 2,590 instances in 
the biological class, 956 in the physical class, and 754 in the chemical class. To mitigate model bias, the 
`class_weight='balanced'` parameter was applied during model training. 

To further validate the clustering structure, a two-dimensional projection was generated using 
Principal Component Analysis (PCA), as illustrated in Figure 2b. The three clusters form relatively 
distinct spatial regions, supporting the coherence of the K-Means result. The silhouette score of 0.4767 
and the PCA components accounting for 95.34% of total variance confirm the representativeness and 
reliability of the clustering. 

 
2.4 Development of the Random Forest Model 

After the labeling process with K-Means, a classification model was developed using the 
Random Forest algorithm due to its ability to handle numerical multivariant data, tolerant of outliers, 
and stable under unbalanced class distributions [30], [31], [32]. Previous studies have also 
demonstrated that Random Forest outperforms other machine learning classifiers in managing 
imbalanced datasets [33] and maintains high predictive accuracy in high-dimensional feature spaces 
[34]. The model was trained using ten water quality parameters as input features, with the target label 
being the filtration media category: physical, biological, and chemical. 

The data was stratified into training and test subsets with a ratio of 60:40. The model was 
trained using 500 decision trees without advanced hyperparameter tuning, as the main focus was to 
evaluate the feasibility of classification based on the water quality data. Initial evaluation was done 
based on accuracy, precision, recall, and f1-score metrics, as well as confusion matrix visualization. Full 
results are presented in the Results and Discussion section. 

 

 
Figure 3. Research Process Flow Chart 

Figure 3 presents the flow of the research process, starting from data preprocessing, feature 
selection, K-Means labeling, to the construction and evaluation of the Random Forest classification 
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model. The diagram illustrates the systematic stages carried out in the development of a classification 
model for graywater filtration media types. 

This research is focused on building and preliminary validation of the data-based classification 
model, without direct implementation of the IoT system. Therefore, the resulting model serves as the 
foundation of classification logic that can be integrated into a water quality sensor-based intelligent 
biofiltration system at a later stage of development. 

 
3. RESULT AND DISCUSSION  

This section presents the results of a computational evaluation of a Random Forest algorithm-
based greywater filtration media type classification model, which distinguishes between physical, 
biological, and chemical filtration based on ten water quality parameters. The evaluation was conducted 
using accuracy, precision, recall, and f1-score metrics, and supported by cross-validation and learning 
curve visualization to assess the stability and generalizability of the model. The model is intended as an 
automatic classification logic in data-driven intelligent biofiltration systems. 
 
3.1 Classification Model Evaluation  

Model evaluation was conducted by stratifying the dataset into training and test data (60:40 
ratio), in order to maintain proportional distribution between classes. The Random Forest model was 
trained using ten water quality parameters to predict the filtration media labels: physical, biological, and 
chemical, resulting from K-Means labeling. 

 

Table 3. Classification Report Model Random Forest (60:40) 

Class Precision Recall F1-score Support 

Biological 0.99 0.99 0.99 1036 
Physical 0.97 0.98 0.97 382 
Chemical 0.96 0.95 0.95 302 
Accuracy - - 0.98 1720 
Macro Avg 0.97 0.97 0.97 1720 
Weighted Avg 0.98 0.98 0.98 1720 

 
The classification results on the test dataset are shown in Table 3, demonstrating a macro F1-

score of 0.97. The model exhibited balanced predictive performance across all classes, with the 
Biological class achieving the highest F1-score of 0.99. This indicates that biologically contaminated 
samples—characterized by features such as high turbidity and low dissolved oxygen—were well 
distinguished. The Physical and Chemical classes attained F1-scores of 0.97 and 0.95 respectively, with 
minor misclassifications to other categories as seen in the confusion matrix. Overall, the model achieved 
an accuracy of 98%, confirming its robustness for filtration media classification tasks. 

Prediction results are visualized in the confusion matrix (Figure 4a), which shows a strong 
concentration of correct predictions along the main diagonal. These findings confirm that the model is 
capable of consistently distinguishing between the three filtration classes without significant 
misclassification. 
 

 

Figure 4a. Confusion Matrix of Random Forest Model 
 

Figure 4b. ROC Curve of Random Forest Model 



 
JOIN (Jurnal Online Informatika)  p-ISSN: 2528-1682 

e-ISSN: 2527-9165 

 

 

 

 
Random Forest-Based Classification of Greywater Filtration Media for Intelligent Biofiltration Systems  
Harun Sujadi1, Dipa Subandi2, Nunu Nurdiana3 

448 

 

In addition to the standard evaluation metrics, the Receiver Operating Characteristic (ROC) 
curve was utilized to assess the model’s ability to distinguish between the three filtration media 
categories. As illustrated in Figure 4b, the Random Forest model achieved an Area Under the Curve 
(AUC) score of 1.00 for each class biological, physical, and chemical. This indicates that the classifier was 
able to perfectly separate positive and negative instances across all threshold levels. The ROC analysis 
provides a more robust performance assessment, especially in scenarios involving imbalanced data and 
pseudo-labels derived from K-Means clustering. These results strengthen the model’s reliability and 
demonstrate its potential for integration into real-time classification systems for intelligent biofiltration 
applications. 

To better understand the contribution of each input parameter, feature importance analysis was 
conducted based on the Random Forest model. As illustrated in Figure 5, the most influential features 
were Hardness and Alkalinity, followed by Ammonia, Nitrite, and BOD. These top features are commonly 
associated with dissolved ionic content and organic pollution in greywater, supporting their relevance 
in identifying suitable filtration media. Parameters such as DO, Turbidity, and pH were found to be less 
dominant, indicating that the model relies more on chemical characteristics than physical ones when 
performing classification. The Random Forest model was trained using class_weight='balanced' and 
n_estimators=500, which were selected to handle class imbalance and ensure robust performance 
across categories. 

 

 
Figure 5. Feature Importance in Random Forest Model 

 
3.2 Comparative Evaluation with Support Vector Machine 

To validate the robustness of the Random Forest classifier, a comparative evaluation was 
performed using a Support Vector Machine (SVM) model. Both models were trained and tested on the 
same stratified dataset using ten water quality parameters.  
 

 

Figure 6a. Confusion Matrix of the SVM Classifier 

 

Figure 6b. ROC Curve of the SVM Classifier 

http://u.lipi.go.id/1466480524
http://u.lipi.go.id/1464049910


 
JOIN | Volume 10 No. 2 | December 2025: 442-452  

 

 

 
 449 
 

The SVM achieved an accuracy of 98%, a macro F1-score of 0.97, and ROC-AUC scores of 1.00 
across all classes, comparable to the performance of the Random Forest. However, the confusion matrix 
showed that Random Forest produced slightly more balanced predictions, particularly in the majority 
class of biological filtration. These findings support the reliability of the Random Forest model while 
positioning SVM as a valid baseline for greywater filtration media classification tasks. 
 
3.3 Model Validation Using Cross-Validation   

To evaluate the consistency of the model's performance, cross-validation was carried out using 
two schemes: 5-Fold and 10-Fold. 

 

Table 4. Cross-Validation Results (Macro F1-Score) 

Validation 
Scheme 

F1 Macro Avg 
Standard 
Deviation 

5-Fold CV 0.9773 0.0090 
10-Fold CV 0.9785 0.0124 

 
The results are presented in Table 4. In the 5-Fold scheme, the model achieved an average macro 

f1-score of 0.9773 with a standard deviation of 0.0090, while in the 10-Fold scheme, the average macro 
f1-score slightly increased to 0.9785 with a standard deviation of 0.0124. The low deviation values 
indicate stable model performance across different subsets of data. These results suggest that the model 
does not suffer from overfitting and demonstrates strong generalization capability, making it suitable as 
a classification logic in a smart biofiltration system based on water quality data. 

 
3.4 Learning Curve Analysis and Model Generalization   

To assess the potential overfitting behavior and model generalization, a learning curve analysis 
was conducted based on varying training sizes (Figure 7a). The training F1-score remained at 1.00, as 
typically expected in Random Forest models. Meanwhile, the validation curve stabilized around 0.978 
with lower fluctuation as the data size increased. The narrower confidence bounds further indicated 
consistent cross-validation performance. These results suggest that the relabeling process, informed by 
K-Means clustering, significantly contributed to improving model reliability and reducing labeling-
induced variance. 
 

 

Figure 7a. Learning Curve for Evaluating Overfitting in the 
Random Forest Model 

 

Figure 7b. Validation Curve of the Random Forest Model 

 
As a complement, Figure 7b shows the validation curve across varying numbers of decision trees 

(n_estimators) ranging from 10 to 1000. The results indicate that model performance on validation data 
stabilized early, from approximately 100 estimators, maintaining an F1-score around 0.978. No 
significant decrease was observed even at higher estimator counts, suggesting that the increased model 
complexity did not lead to overfitting. Therefore, choosing n_estimators within the range of 300 to 500 
is considered optimal to balance accuracy and computational efficiency. 
 

3.5 Comparison with Previous Studies 

Various previous studies have demonstrated the effectiveness of the Random Forest algorithm 
in water quality classification, albeit with different focuses. Some studies performed binary classification 



 
JOIN (Jurnal Online Informatika)  p-ISSN: 2528-1682 

e-ISSN: 2527-9165 

 

 

 

 
Random Forest-Based Classification of Greywater Filtration Media for Intelligent Biofiltration Systems  
Harun Sujadi1, Dipa Subandi2, Nunu Nurdiana3 

450 

 

of water potability with high accuracy [5], predicted BOD values with 81.21% accuracy using DO, 
temperature, and pH as input features [19] or categorized groundwater quality into three classes using 
Conditional Inference Tree with 93.75% accuracy and 6.25% OOB error [8]. Other works employed PCA 
and Multi-Layer Perceptron (MLP) to assess water consumption feasibility [6], Other works employed 
PCA and Multi-Layer Perceptron (MLP) to assess water consumption feasibility [13], . However, these 
approaches primarily focused on general water quality status and not on filtration media selection based 
on data. 

 Another study using Random Forest with 10 water quality parameters also reported perfect 
results across all evaluation metrics [35]. However, the classification was limited to binary potable vs. 
non-potable status, without any linkage to filtration media or treatment system design. 

As a distinctive contribution, this study proposes a classification approach for filtration media 
types (physical, chemical, biological) based on numerical water quality data simulated as greywater, 
utilizing an open dataset from Mendeley Data [14]. Media labels were derived using K-Means Clustering 
(k = 3), based on ten relevant water quality parameters. The classification model was subsequently 
developed using Random Forest with class_weight adjustment to address class imbalance, without 
applying synthetic oversampling methods such as SMOTE. 

Evaluation was conducted comprehensively through a confusion matrix, classification report, 
5-fold and 10-fold cross-validation, as well as learning and validation curve analyses. With this approach, 
the proposed model contributes as a data-driven classification logic that can be integrated into future 
smart biofiltration systems based on water quality sensor data. 

 
4. CONCLUSION  

This study successfully developed and evaluated a classification model for greywater filtration 
media using the Random Forest algorithm, incorporating ten water quality parameters as input features. 
The classification labels were derived through an unsupervised K-Means clustering approach, which 
grouped the data into three main filtration categories: physical, chemical, and biological. 

The model demonstrated high performance with a macro F1-score consistently ranging from 
0.97 to 0.98 on test data, supported by robust cross-validation results from 5-Fold and 10-Fold schemes. 
Learning curve and validation curve analyses confirmed the model’s ability to generalize well without 
signs of overfitting, even as data volume and estimator count increased. 

The dominant characteristics of each filtration type were successfully identified, indicating that 
the model can recognize relevant patterns in water quality data for each category. As a foundational step, 
this data-driven classification approach offers a promising basis for intelligent decision-making in smart 
biofiltration systems. The findings of this study are expected to contribute to the development of 
machine learning-based domestic wastewater treatment systems integrated with real-time water 
quality sensors. However, as the dataset used in this study was derived from aquaculture simulations 
rather than actual household greywater, further validation using real greywater samples is necessary to 
confirm the model’s applicability under real-world conditions. 

In future work, additional classification models and optimization strategies may be explored to 
enhance performance and scalability. Integrating the proposed model with real-time IoT-based water 
quality monitoring systems also presents a valuable direction for applied research. 
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