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1. INTRODUCTION

On Urbanization and increased domestic water consumption have put significant pressure on
surface water quality, especially in developing countries [1]. One type of domestic wastewater that is
often overlooked but has the potential for reuse is greywater, which is non-fecal wastewater derived
from bathing, washing, and kitchen activities [2], [3], With proper treatment, greywater can be reused
for purposes such as irrigation, in line with the principles of sustainable water management [4].

To be safe for reuse, greywater must go through a filtration process that is capable of handling
physical, chemical, and biological contaminants. Intelligent biofiltration systems are emerging as a
potential solution through the integration of real-time water quality data from environmental sensors
[5], [6], [7]- However, a major challenge in these systems is determining the type of filtration media that
best suits the characteristics of the incoming graywater.

Various machine learning (ML) approaches have been used for water quality classification, such
as Support Vector Machine (SVM), Decision Tree, and Random Forest [8], [9], [10], [11], [12]. Generally,
the focus of previous research has been on general water quality classification or quality index
prediction [13], without considering the need for specific classification of filtration media types, which
is crucial in the context of data-driven processing.

This study proposes the development of a filtration media type classification model (physical,
chemical, biological) using the Random Forest algorithm based on ten key water quality parameters. The
dataset used comes from an aquaculture water quality study simulated as graywater, given the similarity
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of key parameters such as BOD, DO, ammonia, and turbidity [14]. The selection of parameters refers to
the regulation of water quality standards for irrigation and environment such as Regulation of the
Minister of Health of the Republic of Indonesia No. 2 Year 2023, Permenkes No. 32 Year 2017, Minister
of Environment and Forestry Regulation No. P.68/MENLHK/2016, as well as guidelines from the World
Health Organization (WHO) [15], [16], [17], [18]

Initial labeling was performed using K-Means Clustering to form three filtration categories,
which were then used as labels in the Random Forest model [19]. Unlike most previous studies which
focused on binary water classification or potability prediction, this study introduces a novel approach
by classifying greywater into filtration media categories (physical, biological, and chemical) using
machine learning. The labels were generated through K-Means clustering and used to train a Random
Forest model, offering a data-driven logic for adaptive media selection. This approach provides a
foundational step toward intelligent greywater treatment systems that can dynamically respond to real-
time water quality conditions The resulting model is an early prototype of automated classification logic
that can be integrated into loT-based intelligent filtration systems, especially for the treatment of
household wastewater to be utilized as irrigation water.

2. METHOD

2.1 Dataset and Parameter Characteristics

This research utilizes a public dataset titled Aquaculture - Water Quality Dataset available in the
Mendeley Data repository [14]. This dataset was originally developed to evaluate pond water quality in
aquaculture systems based on numerical parameters relevant to fish growth. Although not derived from
direct field measurements, this dataset is systematically organized and can be used for training machine
learning-based classification models.

This dataset was used as the initial simulation data for training the Al model, assuming that the
parameters would later be provided by water quality sensors in the real system implementation.

The dataset consists of 4,300 data samples with 14 water quality parameters, namely
temperature, turbidity, dissolved oxygen (DO), biological oxygen demand (BOD), carbon dioxide (CO,),
pH, alkalinity, hardness, calcium, ammonia, nitrite, phosphorus, hydrogen sulfide (H,S), and plankton.
All data are organized in numerical format with consistent units of measurement.

Although the original context was aquaculture, a number of parameters in this dataset such as
BOD, DO, ammonia, pH, and turbidity are also used in domestic graywater quality assessment. Therefore,
this dataset is relevant to use as simulative data to build a filtration media type classification model
based on graywater quality [13].

2.2 Preprocessing and Feature Selection

From a total of 14 parameters available in the dataset, 10 parameters were selected for use in
training and testing the classification model. The feature selection process was based on three main
considerations, namely: (1) consistent data availability across entries, (2) ecological and technical
relevance to domestic graywater quality, and (3) regulatory support from applicable environmental
quality standards.

The parameters selected include temperature, pH, dissolved oxygen (DO), biological oxygen
demand (BOD), ammonia, nitrite, phosphorus, hardness, alkalinity, and turbidity. This selection is based
on the provisions listed in the Regulation of the Minister of Health of the Republic of Indonesia No. 2
Year 2023, Permenkes No. 32 Year 2017, Minister of Environment and Forestry Regulation No.
P.68/MENLHK/2016, as well as guidelines from the World Health Organization (WHO)[15], [16], [17],
[18].

Some parameters such as hardness and alkalinity were considered because they have a high
correlation with total dissolved solids (TDS), which directly affects the effectiveness of the filtration
media. Previous studies have shown that TDS is strongly correlated with alkalinity and hardness (r &gt;
0.8), as well as conductivity (r = 0.9), suggesting a structural link between water quality parameters.
Even in the Ratuwa river analysis, the largest contributions to TDS values came from alkalinity (23.5%)
and hardness (19.9%), outweighing other ions [20], [21], [22], [23]. In contrast, parameters such as
carbon dioxide, H,S, plankton, calcium, and nitrite are to some extent not used because they are not the
main focus in the filtration process of small-scale domestic graywater, nor are they prioritized in the
domestic wastewater quality standard regulations.
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Although a correlation heatmap was also provided (Figure 1) to identify redundancy among
features, it was not the main basis for feature selection. Instead, domain knowledge and regulatory
standards were prioritized to ensure relevance to greywater filtration contexts. As the correlation values
were mostly below 0.5, all selected features were retained to preserve informative diversity.

Table 1. Selected Parameters and Quality Standard Sources

Criteria units Source of Quality Standard Explanation
Temperature °C Permenkes No. 2/2023, Indicator of ambient temperature and biological
P.68/MENLHK/2016 processes
pH - Permenkes No. 2/2023, Basic parameter of water chemistry balance
P.68/MENLHK/2016
Dissolved Oxygen (DO) mg/L P.68/MENLHK/2016 Indicates oxygen availability for biological processes
Biochemical Oxygen mg/L P.68/MENLHK/2016 Measures the load of biodegradable organic
Demand (BOD) pollutants
Ammonia (NH3) mg/L Permenkes No. 2/2023, Indicates the level of toxic nitrogen contamination
P.68/MENLHK/2016
Phosphorus (P0,37) mg/L Permenkes No. 2/2023 Key nutrient causing eutrophication
Nitrite Mg/L Permenkes No. 32/2017 Indicator of toxic inorganic nitrogen contaminants
Hardness mg/L WHO Closely related to TDS and scale formation potential
Alkalinity mg/L WHO Indicator of acid neutralizing capacity and projected
TDS
Turbidity (CM) CM P.68/MENLHK/2016, WHO Water turbidity based on visual visibility (in
centimeters)
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Figure 1. Heatmap of Correlation beetwen Water Quality Parameters

To identify possible redundancies between numerical features and support the input parameter
selection process, a correlation analysis between water quality parameters was conducted using
Pearson coefficient. The results of the correlation visualization are presented in Figure 1. In general,
correlations between parameters were low to moderate (r &It; 0.5), indicating that each feature
contributed relatively unique information to the classification system. The highest correlations were
recorded between BOD and Nitrite (r = 0.47) and Ammonia and BOD (r = 0.34), while a negative
correlation was found between Turbidity and DO (r = -0.35). No extreme multicollinearity correlations
were found between parameters, so all features were considered suitable for inclusion in the
classification model training.

2.3 Data Labeling with K-Means Clustering

Since the dataset did not have explicit classification labels, the labeling process was performed
using the K-Means Clustering algorithm which has high computational efficiency, fast convergence, and
is widely used in clustering environmental data [24].
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The number of clusters was set to three (k = 3) to represent the three main categories of
filtration media: physical, chemical, and biological. This division refers to the greywater treatment
literature that differentiates water quality parameters based on physical (such as turbidity and
temperature), chemical (such as pH and BOD), and biological (such as organic residue and coliform)
characteristics [3].

Labeling was done based on ten selected parameters, and the clustering results were analyzed
through the average value of each parameter in each group. Clusters with high ammonia and BOD levels
were associated with biological filtration, while clusters with high ionic levels were associated with
chemical filtration, and clusters with high turbidity and low chemical parameters were considered
physical filtration.

The use of K-Means in water quality classification has also been proven effective in various
studies, both for groundwater, rivers, and industrial effluents [25], [26], [27], [28], [29].

Table 2. Average Value of Water Quality Parameters in Each K-Means Result Cluster.

Parameters Cluster 0 (Physical) Cluster 1 (Biological) Cluster 2 (Chemical)

Temp (°C) 26.229046 25.375313 26.119791
DO (mg/L) 6.161586 4.798653 5.931697
BOD (mg/L) 4.227467 2.451902 4.039728
pH 7.667912 7.719905 7.749116
Alkalinity (mg/L) 114.389701 56.667415 194.772847
Hardness (mg/L) 249.174967 100.093532 64.834258
Ammonia (mg/L) 0.075587 0.029032 0.079713
Nitrite (mg/L) 1.082027 0.364187 1.043787
Phosphorus (mg/L) 1.243793 1.104928 1.315640
Turbidity (cm) 28.358927 44.969636 32.252305

Based on the average values of water quality parameters shown in Table 3, each cluster was
classified according to the appropriate filtration type. Cluster 0 was labeled as physical filtration due to
its highest hardness and lowest turbidity, indicating a dominance of suspended solid particles. Cluster 1
exhibited the lowest dissolved oxygen (DO) and highest turbidity, suggesting biological contamination
that may require microbial treatment, despite relatively low BOD and ammonia levels. Meanwhile,
Cluster 2 was categorized as chemical filtration, as it showed elevated levels of alkalinity, nitrite, and
phosphorus, along with the lowest hardness, indicating a prevalence of dissolved chemical pollutants.

The interpretation of cluster labels into physical, biological, and chemical categories was based
on a synthesis of water quality indicator functions. Cluster 0, characterized by high hardness and low
turbidity, reflects the dominance of suspended solids, aligning with typical physical filtration targets
[25]. Cluster 1 showed high turbidity and low DO common indicators of organic or microbial
contamination therefore classified under biological filtration. Meanwhile, Cluster 2 had elevated
concentrations of nitrite, phosphorus, and alkalinity, which are indicative of dissolved chemical
pollutants requiring chemical treatment. This interpretive framework is consistent with classifications
found in environmental water treatment literature [3], [26].
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These labels were subsequently used as target classes in the Random Forest classification
model. Prior to training, the class distribution resulting from K-Means clustering was examined to
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identify potential imbalances. As shown in Figure 2a, the dataset is imbalanced, with 2,590 instances in
the biological class, 956 in the physical class, and 754 in the chemical class. To mitigate model bias, the
“class_weight='balanced" parameter was applied during model training.

To further validate the clustering structure, a two-dimensional projection was generated using
Principal Component Analysis (PCA), as illustrated in Figure 2b. The three clusters form relatively
distinct spatial regions, supporting the coherence of the K-Means result. The silhouette score of 0.4767
and the PCA components accounting for 95.34% of total variance confirm the representativeness and
reliability of the clustering.

2.4 Development of the Random Forest Model

After the labeling process with K-Means, a classification model was developed using the
Random Forest algorithm due to its ability to handle numerical multivariant data, tolerant of outliers,
and stable under unbalanced class distributions [30], [31], [32]. Previous studies have also
demonstrated that Random Forest outperforms other machine learning classifiers in managing
imbalanced datasets [33] and maintains high predictive accuracy in high-dimensional feature spaces
[34]. The model was trained using ten water quality parameters as input features, with the target label
being the filtration media category: physical, biological, and chemical.

The data was stratified into training and test subsets with a ratio of 60:40. The model was
trained using 500 decision trees without advanced hyperparameter tuning, as the main focus was to
evaluate the feasibility of classification based on the water quality data. Initial evaluation was done
based on accuracy, precision, recall, and f1-score metrics, as well as confusion matrix visualization. Full
results are presented in the Results and Discussion section.
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Select 10 Relevant Water
Quality Parameters

Labeling using K-Means
Clustering (K = 3)

y
Assign Labels
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Encode Labels & Split Data (60-40)

Train Random Forest Model
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Evaluate Model Performance
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h
Generate Filtration Media |
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Figure 3. Research Process Flow Chart

Figure 3 presents the flow of the research process, starting from data preprocessing, feature
selection, K-Means labeling, to the construction and evaluation of the Random Forest classification
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model. The diagram illustrates the systematic stages carried out in the development of a classification
model for graywater filtration media types.

This research is focused on building and preliminary validation of the data-based classification
model, without direct implementation of the IoT system. Therefore, the resulting model serves as the
foundation of classification logic that can be integrated into a water quality sensor-based intelligent
biofiltration system at a later stage of development.

3. RESULT AND DISCUSSION

This section presents the results of a computational evaluation of a Random Forest algorithm-
based greywater filtration media type classification model, which distinguishes between physical,
biological, and chemical filtration based on ten water quality parameters. The evaluation was conducted
using accuracy, precision, recall, and f1-score metrics, and supported by cross-validation and learning
curve visualization to assess the stability and generalizability of the model. The model is intended as an
automatic classification logic in data-driven intelligent biofiltration systems.

3.1 Classification Model Evaluation

Model evaluation was conducted by stratifying the dataset into training and test data (60:40
ratio), in order to maintain proportional distribution between classes. The Random Forest model was
trained using ten water quality parameters to predict the filtration media labels: physical, biological, and
chemical, resulting from K-Means labeling.

Table 3. Classification Report Model Random Forest (60:40)

Class Precision Recall F1-score Support
Biological 0.99 0.99 0.99 1036
Physical 0.97 0.98 0.97 382
Chemical 0.96 0.95 0.95 302
Accuracy - - 0.98 1720
Macro Avg 0.97 0.97 0.97 1720
Weighted Avg 0.98 0.98 0.98 1720

The classification results on the test dataset are shown in Table 3, demonstrating a macro F1-
score of 0.97. The model exhibited balanced predictive performance across all classes, with the
Biological class achieving the highest F1-score of 0.99. This indicates that biologically contaminated
samples—characterized by features such as high turbidity and low dissolved oxygen—were well
distinguished. The Physical and Chemical classes attained F1-scores of 0.97 and 0.95 respectively, with
minor misclassifications to other categories as seen in the confusion matrix. Overall, the model achieved
an accuracy of 98%, confirming its robustness for filtration media classification tasks.

Prediction results are visualized in the confusion matrix (Figure 4a), which shows a strong
concentration of correct predictions along the main diagonal. These findings confirm that the model is
capable of consistently distinguishing between the three filtration classes without significant
misclassification.

Confusion Matrix - Random Forest

Figure 4a. Confusion Matrix of Random Forest Model
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In addition to the standard evaluation metrics, the Receiver Operating Characteristic (ROC)
curve was utilized to assess the model’s ability to distinguish between the three filtration media
categories. As illustrated in Figure 4b, the Random Forest model achieved an Area Under the Curve
(AUC) score of 1.00 for each class biological, physical, and chemical. This indicates that the classifier was
able to perfectly separate positive and negative instances across all threshold levels. The ROC analysis
provides a more robust performance assessment, especially in scenarios involving imbalanced data and
pseudo-labels derived from K-Means clustering. These results strengthen the model’s reliability and
demonstrate its potential for integration into real-time classification systems for intelligent biofiltration
applications.

To better understand the contribution of each input parameter, feature importance analysis was
conducted based on the Random Forest model. As illustrated in Figure 5, the most influential features
were Hardness and Alkalinity, followed by Ammonia, Nitrite, and BOD. These top features are commonly
associated with dissolved ionic content and organic pollution in greywater, supporting their relevance
in identifying suitable filtration media. Parameters such as DO, Turbidity, and pH were found to be less
dominant, indicating that the model relies more on chemical characteristics than physical ones when
performing classification. The Random Forest model was trained using class_weight="balanced' and
n_estimators=500, which were selected to handle class imbalance and ensure robust performance
across categories.

Top Contributing Features in Random Forest Classification
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Figure 5. Feature Importance in Random Forest Model

3.2 Comparative Evaluation with Support Vector Machine

To validate the robustness of the Random Forest classifier, a comparative evaluation was
performed using a Support Vector Machine (SVM) model. Both models were trained and tested on the
same stratified dataset using ten water quality parameters.
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The SVM achieved an accuracy of 98%, a macro F1-score of 0.97, and ROC-AUC scores of 1.00
across all classes, comparable to the performance of the Random Forest. However, the confusion matrix
showed that Random Forest produced slightly more balanced predictions, particularly in the majority
class of biological filtration. These findings support the reliability of the Random Forest model while
positioning SVM as a valid baseline for greywater filtration media classification tasks.

3.3 Model Validation Using Cross-Validation

To evaluate the consistency of the model's performance, cross-validation was carried out using
two schemes: 5-Fold and 10-Fold.

Table 4. Cross-Validation Results (Macro F1-Score)

Validation F1 Macro Avg Standard

Scheme Deviation
5-Fold CV 0.9773 0.0090
10-Fold CV 0.9785 0.0124

The results are presented in Table 4. In the 5-Fold scheme, the model achieved an average macro
f1-score of 0.9773 with a standard deviation of 0.0090, while in the 10-Fold scheme, the average macro
f1-score slightly increased to 0.9785 with a standard deviation of 0.0124. The low deviation values
indicate stable model performance across different subsets of data. These results suggest that the model
does not suffer from overfitting and demonstrates strong generalization capability, making it suitable as
a classification logic in a smart biofiltration system based on water quality data.

3.4 Learning Curve Analysis and Model Generalization

To assess the potential overfitting behavior and model generalization, a learning curve analysis
was conducted based on varying training sizes (Figure 7a). The training F1-score remained at 1.00, as
typically expected in Random Forest models. Meanwhile, the validation curve stabilized around 0.978
with lower fluctuation as the data size increased. The narrower confidence bounds further indicated
consistent cross-validation performance. These results suggest that the relabeling process, informed by
K-Means clustering, significantly contributed to improving model reliability and reducing labeling-
induced variance.
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Figure 7a. Learning Curve for Evaluating Overfitting in the Figure 7b. Validation Curve of the Random Forest Model

Random Forest Model

As a complement, Figure 7b shows the validation curve across varying numbers of decision trees
(n_estimators) ranging from 10 to 1000. The results indicate that model performance on validation data
stabilized early, from approximately 100 estimators, maintaining an F1l-score around 0.978. No
significant decrease was observed even at higher estimator counts, suggesting that the increased model
complexity did not lead to overfitting. Therefore, choosing n_estimators within the range of 300 to 500
is considered optimal to balance accuracy and computational efficiency.

3.5 Comparison with Previous Studies

Various previous studies have demonstrated the effectiveness of the Random Forest algorithm
in water quality classification, albeit with different focuses. Some studies performed binary classification
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of water potability with high accuracy [5], predicted BOD values with 81.21% accuracy using DO,
temperature, and pH as input features [19] or categorized groundwater quality into three classes using
Conditional Inference Tree with 93.75% accuracy and 6.25% OOB error [8]. Other works employed PCA
and Multi-Layer Perceptron (MLP) to assess water consumption feasibility [6], Other works employed
PCA and Multi-Layer Perceptron (MLP) to assess water consumption feasibility [13], . However, these
approaches primarily focused on general water quality status and not on filtration media selection based
on data.

Another study using Random Forest with 10 water quality parameters also reported perfect
results across all evaluation metrics [35]. However, the classification was limited to binary potable vs.
non-potable status, without any linkage to filtration media or treatment system design.

As a distinctive contribution, this study proposes a classification approach for filtration media
types (physical, chemical, biological) based on numerical water quality data simulated as greywater,
utilizing an open dataset from Mendeley Data [14]. Media labels were derived using K-Means Clustering
(k = 3), based on ten relevant water quality parameters. The classification model was subsequently
developed using Random Forest with class_weight adjustment to address class imbalance, without
applying synthetic oversampling methods such as SMOTE.

Evaluation was conducted comprehensively through a confusion matrix, classification report,
5-fold and 10-fold cross-validation, as well as learning and validation curve analyses. With this approach,
the proposed model contributes as a data-driven classification logic that can be integrated into future
smart biofiltration systems based on water quality sensor data.

4. CONCLUSION

This study successfully developed and evaluated a classification model for greywater filtration
media using the Random Forest algorithm, incorporating ten water quality parameters as input features.
The classification labels were derived through an unsupervised K-Means clustering approach, which
grouped the data into three main filtration categories: physical, chemical, and biological.

The model demonstrated high performance with a macro F1-score consistently ranging from
0.97 to 0.98 on test data, supported by robust cross-validation results from 5-Fold and 10-Fold schemes.
Learning curve and validation curve analyses confirmed the model’s ability to generalize well without
signs of overfitting, even as data volume and estimator count increased.

The dominant characteristics of each filtration type were successfully identified, indicating that
the model can recognize relevant patterns in water quality data for each category. As a foundational step,
this data-driven classification approach offers a promising basis for intelligent decision-making in smart
biofiltration systems. The findings of this study are expected to contribute to the development of
machine learning-based domestic wastewater treatment systems integrated with real-time water
quality sensors. However, as the dataset used in this study was derived from aquaculture simulations
rather than actual household greywater, further validation using real greywater samples is necessary to
confirm the model’s applicability under real-world conditions.

In future work, additional classification models and optimization strategies may be explored to
enhance performance and scalability. Integrating the proposed model with real-time IoT-based water
quality monitoring systems also presents a valuable direction for applied research.
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